Background: Oxygen is a liberally dosed medicine; however, too much oxygen can be harmful. In certain situations, treatment with high oxygen concentration is necessary, e.g. after cardiopulmonary resuscitation. The amount of oxygen and duration of hyperoxia causing pulmonary damage is not fully elucidated. The aim of this study was to investigate pathophysiological and metabolite changes in lung tissue during hyperoxia while the lungs were kept open under constant low pressure.
Methods: Seven pigs were exposed to 100% oxygen for five hours, using an apneic oxygenation technique with one long uninterrupted inspiration, while carbon dioxide was removed with an interventional lung assist. Arterial blood samples were collected every 30 minutes. Lung biopsies were obtained before and after hyperoxia. Microscopy and high-resolution magic angle spinning nuclear magnetic resonance spectroscopy were used to detect possible pathological and metabolite changes, respectively. Unsupervised multivariate analysis of variance and paired sample tests were performed. A two-tailed p-value ≤ 0.05 was considered significant.
Results: No significant changes in arterial pH, and partial pressure of carbon dioxide, and no clear histopathological changes were observed after hyperoxia. While blood glucose and lactate levels changed to a minor degree, their levels dropped significantly in the lung after hyperoxia (p ≤ 0.04). Reduced levels of antioxidants (p ≤ 0.05), tricarboxylic acid cycle and energy (p ≤ 0.04) metabolites and increased levels of several amino acids (p ≤ 0.05) were also detected.
Conclusion: Despite no histological changes, tissue metabolites were altered, indicating that exposure to hyperoxia affects lung tissue matrix on a molecular basis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424812 | PMC |
http://dx.doi.org/10.1016/j.metop.2019.100018 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Postgraduate Program in Biochemistry, Federal University of Espírito Santo (UFES), Vitória, Espírito Santo, Brazil.
Asthma is a complex disease with varied clinical manifestations resulting from the interaction between environmental and genetic factors. While chronic airway inflammation and hyperresponsiveness are central features, the etiology of asthma is multifaceted, leading to a diversity of phenotypes and endotypes. Although most research into the genetics of asthma focused on the analysis of single nucleotide polymorphisms (SNPs), studies highlight the importance of structural variations, such as copy number variations (CNVs), in the inheritance of complex characteristics, but their role has not yet been fully elucidated in asthma.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.
View Article and Find Full Text PDFJ Robot Surg
January 2025
Department of Pediatric Anesthesia and Intensive Care, Necker-Enfants Malades University Hospital, AP-HP Centre, Université Paris Cité, 149, Rue de Sèvres 75015, Paris, France.
Retroperitoneal robotic-assisted laparoscopic pyeloplasty (R-RALP) is the commonest urologic procedure performed in children, entailing retroperitoneal CO2 insufflation and lateral decubitus, whose effects on cardiopulmonary variables are poorly known. We, therefore, studied hemodynamic and respiratory changes due to CO2 insufflation and lateral decubitus in children undergoing R-RALP and their effects on regional tissue oxygenation. Between 1/2021 and 7/2024, children affected by ureteropelvic joint obstruction (UPJO) underwent a pyeloplasty by R-RALP at Necker Enfants Malades Hospital (Paris, France), using a standardized surgical technique and a lung-protecting anesthetic protocol aimed to prevent hypercarbia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pediatric Surgery, West China Hospital of Sichuan University, NO. 37 GUOXUE Lane, Chengdu, 610041, Sichuan Province, China.
Identification of lesion demarcation during thoracoscopic anatomical lesion resection is fundamental for treating children with congenital lung malformation. Existing lesion demarcations do not always meet the needs of clinical practice. This study aimed to explore the safety and efficacy of near-infrared fluorescence imaging with nebulized inhalation of indocyanine green for thoracoscopic anatomical lesion resection in children with congenital lung malformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!