Stimulation of fat browning using natural bioactive products is regarded as one of the promising approaches to treat obesity and insulin resistance. Here, we investigated the physiological effects of isoorientin on glucose uptake and lipid accumulation in insulin resistant 3T3-L1 adipocytes. To achieve this, 3T3-L1 adipocytes were exposed to 0.75 mM palmitate for 24 h, to induce insulin resistance, before treatment with 10 μM isoorientin or the comparative controls such as CL-316,243 (10 μM), pioglitazone (10 μM) and compound C (1 μM) for 4 h. Relevant bioassays and Western blot analysis were conducted on these insulin resistant cells. Our results showed that palmitate exposure could induce insulin resistance and mitochondrial dysfunction as measured by reduction in glucose uptake and impaired mitochondrial bioenergetics parameters. However, treatment with isoorientin reversed these effects by improving glucose uptake, blocking lipid accumulation, and modulating the process of mitochondrial respiration. Mechanistically, isoorientin could mediate lipid metabolism by activating 5' AMP-activated protein kinase (AMPK), while also effectively modulating the expression of genes involved in fat browning such as peroxisome proliferator-activated receptor gamma (PPAR)γ/α and uncoupling protein 1 (UCP1). In conclusion, isoorientin impacts insulin resistance in vitro by improving glucose uptake and mitochondrial function, consistent to modulating the expression of genes involved in energy metabolism and fat browning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7424791PMC
http://dx.doi.org/10.1016/j.metop.2020.100037DOI Listing

Publication Analysis

Top Keywords

fat browning
16
insulin resistance
16
glucose uptake
16
lipid accumulation
12
3t3-l1 adipocytes
12
insulin resistant
8
induce insulin
8
improving glucose
8
modulating expression
8
expression genes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!