Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Development of bioresponsive theranostic nanoparticles to enhance cancer diagnostics and control cancer metastasis is highly desirable. In this study, we developed such a bioresponsive theranostic nanoparticle for synergistic photoimmunotherapy. In particular, these nanoparticles were constructed by embedding indocyanine green (ICG) into Mn2+-doped amorphous calcium carbonate (ACC(Mn)) nanoparticles, followed by loading of the Toll-like-receptor-7 agonist imiquimod (IMQ). The IMQ@ACC(Mn)-ICG/PEG nanoparticles respond to the acidic pH of the tumor microenvironment (TME) and co-deliver ICG and IMQ into the tumor. Selective phototherapy was achieved upon activation using a near-infrared laser. In the presence of IMQ and arising from phototherapeutically treated tumor cells, tumor-associated antigens give rise to a strong antitumor immune response. Reversal of the immunosuppressive TME via H+ scavenging of the tumor through ACC nanoparticles effectively inhibits tumor metastases. Moreover, the combination of ICG and Mn2+ also serves as an advanced contrast agent for cancer multimode imaging. Overall, these bioresponsive nanoparticles provide a promising approach for cancer theranostics with promising potential for future clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530098 | PMC |
http://dx.doi.org/10.1039/d0tb01453b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!