Hierarchically ordered planar and spherical membranes (sacs) were constructed using amphiphilic and cationic β-sheet peptides that spontaneously assembled together with negatively charged alginate solution. The system was found to form either a fully developed membrane structure with three distinct regions including characteristic perpendicular fibers or a non-fully developed contact layer lacking these standing fibers, depending on the peptide age, membrane geometry and membrane incubation time. The morphological differences were found to strongly depend on fairly-long incubation time frames that influenced both the peptide's intrinsic alignment and the reaction-diffusion process taking place at the interface. A three-stage mechanism was suggested and key parameters affecting the development process were identified. Stability tests in biologically relevant buffers confirmed the suitability of these membranes for bio applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0sm01197eDOI Listing

Publication Analysis

Top Keywords

cationic β-sheet
8
β-sheet peptides
8
incubation time
8
time matters
4
matters macroscopic
4
macroscopic membranes
4
membranes formed
4
formed alginate
4
alginate cationic
4
peptides hierarchically
4

Similar Publications

Guest Segregation in Heteromeric Multicage Systems.

J Am Chem Soc

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany.

Dynamically interconvertible metallo-supramolecular multicomponent assemblies, coexisting orthogonally in solution, serve as simplified mimics for complex networks found in biological systems. Building on recent advances in controlling the nonstatistical self-assembly of heteroleptic coordination cages and heteromeric completive self-sorting, i.e.

View Article and Find Full Text PDF

Computational Insights into Membrane Disruption by Cell-Penetrating Peptides.

J Chem Inf Model

January 2025

Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.

Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization.

View Article and Find Full Text PDF

In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).

View Article and Find Full Text PDF

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

Bactericidal Hemostatic Sponge: A Point of Care Solution to Combat Traumatic Injury.

Adv Healthc Mater

January 2025

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!