Dialkylation of the 1,3-bis(1,2,4-triazol-1-yl)benzene with ethyl bromide results in the formation of [L-H2]Br2 which, upon salt metathesis with NH4PF6, readily yields the bis(triazolium) salt [L-H2](PF6)2 with non-coordinating counterions. [L-H2](PF6)2 and Ag2O react in a 1 : 1 ratio to yield a binuclear AgI-tetracarbene complex of the composition [(L)2Ag2](PF6)2 which undergoes a facile transmetalation reaction with [Cu(SMe2)Br] to deliver the corresponding CuI-NHC complex [(L)2Cu2](PF6)2. In contrast, the [L-H2]Br2 reacts with [Ir(Cp*)Cl2]2 to generate a doubly C-H activated IrIII-NHC complex 5. Similarly, the triazolinylidene donor supported diorthometalated RuII-complex 6 is also obtained. Complexes 5 and 6 represent the first examples of a stable diorthometalated binuclear IrIII/RuII-complex supported by 1,2,4-triazolin-5-ylidene donors. The synthesized IrIII-NHC complex 5 is found to be more effective than its RuII-analogue (6) for the reduction of a range of alkenes/alkynes via the transfer hydrogenation strategy. Conversely, RuII-complex 6 is identified as an efficient catalyst (0.01 mol% loading) for the β-alkylation of a wide range of secondary alcohols using primary alcohols as alkylating partners via a borrowing hydrogen strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02142cDOI Listing

Publication Analysis

Top Keywords

124-triazolin-5-ylidene donors
8
iriii-nhc complex
8
transition metal
4
metal complexes
4
complexes biscarbene
4
biscarbene ligand
4
ligand featuring
4
featuring 124-triazolin-5-ylidene
4
donors structural
4
structural diversity
4

Similar Publications

Currently, the barrier to successful lung transplantation is ischemia and reperfusion injury, which can lead to the development of bronchiolitis obliterans. Paclitaxel and methotrexate are drugs known to inhibit cell proliferation and have anti-inflammatory effects, and the association of these drugs with cholesterol-rich nanoparticles has been shown to be beneficial in the treatment of other transplanted organs. Thirty-three male Sprague Dawley rats were divided into 3 groups: Basal group, no intervention; Control group, received only nanoparticles; Drug group, paclitaxel and methotrexate treatment.

View Article and Find Full Text PDF

This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Hodgkin Reed-Sternberg (HRS) cells of classic Hodgkin lymphoma (cHL), like many solid tumors, elicit ineffective immune responses. However, patients with cHL are highly responsive to PD-1 blockade, which largely depends on HRS cell-specific retention of MHC class II and implicates CD4 T cells and additional MHC class I-independent immune effectors. Here, we utilize single-cell RNA sequencing and spatial analysis to define shared circulating and microenvironmental features of the immune response to PD-1 blockade in cHL.

View Article and Find Full Text PDF

The β-1,4 galactosylation catalyzed by β-1,4 galactosyltransferases (β4Gal-Ts) is not only closely associated with diverse physiological and pathological processes in humans but also widely applied in the -glycan modification of protein glycoengineering. The loop-closing process of β4Gal-Ts is an essential intermediate step intervening in the binding events of donor substrate (UDP-Gal/Mn) and acceptor substrate during its catalytic cycle, with a significant impact on the galactosylation activities. However, the molecular mechanisms in regulating loop-closing dynamics are not entirely clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!