Inhibiting NF-κB-Mediated Inflammation by Catechol-Type Diphenylbutadiene an Intracellular Copper- and Iron-Dependent Pro-Oxidative Role.

J Agric Food Chem

State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.

Published: September 2020

Chronic inflammation mediated by nuclear factor-κB (NF-κB) plays a crucial role in the development of cancer. As part of our continuous efforts placed on investigating anticancer mechanisms of dietary catechols, we further applied catechol-type diphenylbutadiene (3,4-DHB) as a model molecule to probe whether it inhibits inflammation by its pro-oxidative role. Employing lipopolysaccharide-stimulated RAW264.7 cells as a model of inflammation, we validated that benefiting from its catechol moiety, 3,4-DHB inhibited significantly the LPS-induced formation of NO (11.48 ± 0.39 μM) compared with the only LPS-stimulated group (31.8 ± 1.78 μM) with an inhibitory rate of 64% at 5 μM, expression of iNOS and COX-2 proteins, phosphorylation of IkB kinase and IkBα, and nuclear translocation of NF-κB. Noticeably, its inhibitory activity against the NF-κB-mediated inflammation can be obviously revised by pretreatment of the cells with dithiothreitol (a quencher of both electrophilic -quinone and ROS), neocuproine (a specific chelating agent for copper ions), and deferoxamine (a specific chelating agent for iron ions). The above results support that depending on intracellular copper and iron ions, 3,4-DHB, a pro-electrophile, can be converted into its corresponding -quinone electrophile together with the generation of ROS, a pro-oxidative event that mediates its inhibitory activity against NF-κB signaling and inflammation. The copper- and iron-dependent inhibition against inflammation supports that dietary catechols are probably pro-oxidative anti-inflammatory agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c04399DOI Listing

Publication Analysis

Top Keywords

nf-κb-mediated inflammation
8
catechol-type diphenylbutadiene
8
copper- iron-dependent
8
pro-oxidative role
8
dietary catechols
8
inhibitory activity
8
specific chelating
8
chelating agent
8
iron ions
8
inflammation
7

Similar Publications

Avian Reovirus: From Molecular Biology to Pathogenesis and Control.

Viruses

December 2024

Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.

Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.

View Article and Find Full Text PDF

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.

View Article and Find Full Text PDF

Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens.

Viruses

November 2024

Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.

Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!