A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the potential of halotolerant bacteria for biodegradation of polycyclic aromatic hydrocarbon. | LitMetric

The present study aimed to determine the degradation and transformation of three-ring PAHs phenanthrene and anthracene by Cryptococcus sp. MR22 and Halomonas sp. BR04 under halophilic conditions. The growth progress of Cryptococcus sp. MR22 and Halomonas sp. BR04 on anthracene and phenanthrene was monitored by colony-forming unit (CFU) technique. The growth of the bacteria was maintained at a maximum concentration of 200 mg/L of all tested hydrocarbon, indicating that Cryptococcus sp. MR22 and Halomonas sp. BR04 significantly perform in the removal of the PAH-contaminated medium at low concentrations. The fit model to represent the biodegradation kinetics of both PAHs was first-order rate equation The extract prepared from cells supplemented with three different substrates exhibited some enzymes such as hydroxylase, dioxygenase, laccase and peroxidase. The results suggest that both strains had an impressive ability in the degradation of aromatic and aliphatic hydrocarbon but also could tolerate in the extreme salinity condition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-020-02415-4DOI Listing

Publication Analysis

Top Keywords

cryptococcus mr22
12
mr22 halomonas
12
halomonas br04
12
exploring potential
4
potential halotolerant
4
halotolerant bacteria
4
bacteria biodegradation
4
biodegradation polycyclic
4
polycyclic aromatic
4
aromatic hydrocarbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!