CAESIUM RETENTION CHARACTERISTICS OF KNIFC-PAN RESIN FROM RIVER WATER.

Radiat Prot Dosimetry

Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8203, Japan.

Published: September 2020

The caesium retention characteristics of a potassium-nickel hexacyanoferrate resin in a polyacrylnitrile (KNiFC-PAN) matrix were tested in fresh water over the range of 2.5-400 mL min-1. The experimental setup used 2 mL resin and 4-L aliquots of freshwater samples. The results showed nearly 100% retention at speeds below 10 mL min-1, above 80% up to 100 mL min-1, and approached 50% at 400 mL min-1. Using 100 mL min-1 flow rate and KNiFC-PAN resin in a well-type HPGe detector, the minimum detectable concentration was reduced to 3 mBq kg-1 for 4-L aliquots of water samples from the previous 15 mBq kg-1 achieved by Powdex ion-exchange resin and a planar type HPGe detector.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncaa109DOI Listing

Publication Analysis

Top Keywords

caesium retention
8
retention characteristics
8
knifc-pan resin
8
4-l aliquots
8
hpge detector
8
mbq kg-1
8
resin
5
characteristics knifc-pan
4
resin river
4
river water
4

Similar Publications

Functionalization of layered double hydroxides on bentonite for cesium and iodine retention in high-level radioactive waste disposal.

Chemosphere

February 2025

Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea; Division of Environmental Science & Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea. Electronic address:

Bentonite is regarded as an adequate buffer material in deep geological repositories and its swelling properties serve to prevent the penetration of groundwater into the repository and to minimize the release of radionuclides. However, bentonite is rarely effective in removing anionic radionuclides due to its permanent negative surface charge. The aim of this study was to enhance the anion removal ability of bentonite by incorporating layered double hydroxides (LDH) with a high anion exchange capacity.

View Article and Find Full Text PDF

Selective cesium extraction from highly saline solution using hybrid capacitive deionization with zinc-doped manganese hexacyanoferrate electrode.

J Hazard Mater

December 2024

Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China. Electronic address:

Recently, hybrid capacitive deionization (HCDI) has garnered significant attention for its potential in the selective extraction of cesium (Cs) from radioactive wastewater and salt lakes, which is crucial for resolving the supply-demand imbalance of cesium resources and eliminating radioactive contamination. However, developing HCDI electrodes capable of effectively separating and extracting Cs remains a significant challenge. In this work, we proposed an innovative strategy involving the doping of inactive metal ions to develop zinc-doped manganese hexacyanoferrate (ZMFC) as an HCDI cathode.

View Article and Find Full Text PDF

Chronic inhalation intake of radionuclides is possible for radiation workers in the nuclear industry. The International Commission on Radiological Protection (ICRP) provides organ retention fractions as well as daily urinary and fecal excretion for chronic intake of various radionuclides. In this study, organ retention fractions and daily urinary excretion for chronic intake were estimated for constant chronic intake (CCI) and realistic chronic intake (RCI) scenarios.

View Article and Find Full Text PDF

A ubiquitous distribution of plastic debris has been reported in aquatic and terrestrial environments; however, the interactions between plastics and radionuclides and the radioactivity of environmental plastics remain largely unknown. Here, we characterize biofilms developing on the surface of plastic debris to explore the role of plastic-associated biofilms as an interaction medium between plastics and radiocesium (Cs) in the environment. Biofilm samples were extracted from plastics (1-50 mm in size) collected from two contrasting coastal areas in Japan.

View Article and Find Full Text PDF

Radionuclide Solid:liquid partitioning in an aged, reducing-grout wasteform recovered from a disposal facility.

J Environ Radioact

October 2024

Savannah River National Laboratory, Building 773A, Aiken, SC, 29808, USA. Electronic address:

The Saltstone Disposal Facility on the Savannah River Site in South Carolina disposes of Low-Level Waste in a reducing-grout waste form. Reducing grout is presently being evaluated as a subsurface disposal waste form at several other locations in the United States, as well as in Europe and Asia. The objective of this study was to collect core samples directly from the Saltstone Disposal Facility and measure desorption distribution coefficients (K; radionuclide concentration ratio of saltstone:liquid; (Bq/kg)/Bq/L)) and desorption apparent solubility values (k; radionuclide aqueous concentration (moles/L)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!