An interphase pool of KIF11 localizes at the basal bodies of primary cilia and a reduction in KIF11 expression alters cilia dynamics.

Sci Rep

Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, 440 Tzagournis Medical Research Facility, 420 West 12th Avenue, Columbus, OH, 43210, USA.

Published: August 2020

KIF11 is a homotetrameric kinesin that peaks in protein expression during mitosis. It is a known mitotic regulator, and it is well-described that KIF11 is necessary for the formation and maintenance of the bipolar spindle. However, there has been a growing appreciation for non-mitotic roles for KIF11. KIF11 has been shown to function in such processes as axon growth and microtubule polymerization. We previously demonstrated that there is an interphase pool of KIF11 present in glioblastoma cancer stem cells that drives tumor cell invasion. Here, we identified a previously unknown association between KIF11 and primary cilia. We confirmed that KIF11 localized to the basal bodies of primary cilia in multiple cell types, including neoplastic and non-neoplastic cells. Further, we determined that KIF11 has a role in regulating cilia dynamics. Upon the reduction of KIF11 expression, the number of ciliated cells in asynchronously growing populations was significantly increased. We rescued this effect by the addition of exogenous KIF11. Lastly, we found that depleting KIF11 resulted in an increase in cilium length and an attenuation in the kinetics of cilia disassembly. These findings establish a previously unknown link between KIF11 and the dynamics of primary cilia and further support non-mitotic functions for this kinesin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434902PMC
http://dx.doi.org/10.1038/s41598-020-70787-4DOI Listing

Publication Analysis

Top Keywords

primary cilia
16
kif11
14
interphase pool
8
pool kif11
8
basal bodies
8
bodies primary
8
reduction kif11
8
kif11 expression
8
cilia dynamics
8
cilia
7

Similar Publications

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

Comparative studies on the development of nervous systems have a significant impact on understanding animal nervous system evolution. Nevertheless, an important question is to what degree neuronal structures, which play an important role in early stages, become part of the adult nervous system or are relevant for its formation. This is likely in many direct developers, but it is not the case in forms with catastrophic metamorphosis.

View Article and Find Full Text PDF

Cochlear Organ Dissection, Immunostaining, and Confocal Imaging in Mice.

Bio Protoc

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

The organ of Corti, located in the inner ear, is the primary organ responsible for animal hearing. Each hair cell has a V-shaped or U-shaped hair bundle composed of actin-filled stereocilia and a kinocilium supported by true transport microtubules. Damage to these structures due to noise exposure, drug toxicity, aging, or environmental factors can lead to hearing loss and other disorders.

View Article and Find Full Text PDF

Inpp5e Is Critical for Photoreceptor Outer Segment Maintenance.

J Cell Sci

January 2025

Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester MA 01605, USA.

In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.

View Article and Find Full Text PDF

TBC1D20 coordinates vesicle transport and actin remodeling to regulate ciliogenesis.

J Cell Biol

April 2025

Department of Genetics and Cell Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.

TBC1D20 deficiency causes Warburg Micro Syndrome in humans, characterized by multiple eye abnormalities, severe intellectual disability, and abnormal sexual development, but the molecular mechanisms remain unknown. Here, we identify TBC1D20 as a novel Rab11 GTPase-activating protein that coordinates vesicle transport and actin remodeling to regulate ciliogenesis. Depletion of TBC1D20 promotes Rab11 vesicle accumulation and actin deconstruction around the centrosome, facilitating the initiation of ciliogenesis even in cycling cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!