Hypothesis: Previous use of linear elastic fracture mechanics to estimate toughness of wet particulate materials underestimates the toughness because it does not account for plastic deformation as a dissipation mechanism. Plastic deformation is responsible for the majority of energy dissipated during the fracture of wet colloidal particulate materials. Plastic deformation around the crack tip increases with saturation of the particulate body. The toughness of the body increases with increasing saturation.

Experiments: Elastic plastic fracture mechanics using the J-integral approach was used for the first time to measure the fracture toughness (J) of wet micron sized alumina powder bodies as a function of saturation. The samples were prepared by slip casting. The saturation was controlled by treatment in a humidity chamber. The elastic modulus (E) and the energy dissipated by plastic flow (A) were measured in uniaxial compression. The critical stress intensity factor (K) was measured using a diametral compression sample with a flaw of known size. The fracture toughness (J) was calculated from these measured quantities and the geometry of the specimen.

Findings: Elastic plastic fracture mechanics was used for the first time to quantitively account for plastic deformation of wet particulate materials. The linear elastic fracture mechanics approach previously used accounted for less than 1% of the total energy dissipated in fracture. Toughness (J) was found to increase with increasing saturation due to plastic deformation that increased with saturation level. The improved understanding of toughness as a function of saturation will aid in providing quantitative analysis of cracking in drying colloidal films and bodies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2020.07.142DOI Listing

Publication Analysis

Top Keywords

fracture mechanics
20
plastic deformation
20
particulate materials
16
elastic plastic
12
plastic fracture
12
toughness wet
12
energy dissipated
12
fracture toughness
12
fracture
9
toughness
8

Similar Publications

Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.

Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.

View Article and Find Full Text PDF

Unlabelled: Bone is the major connective tissue maintaining the structural integrity of the human body. However, fracture and many skeletal degenerative diseases can compromise this function. Thus, therapeutics related to bone degeneration are of significant research interest and require good in vitro models for such therapeutic evaluation.

View Article and Find Full Text PDF

Unlabelled: Wound debridement is commonplace in expediting wound healing in the clinic. Despite this, there are limited resources available for simulation training for practitioners prior to facing real-life patients. Typically, citrus peels or porcine skin are employed in a vain attempt to improve debridement proficiency, yet these fail to provide a realistic experience of the textures and consistencies of wounds.

View Article and Find Full Text PDF

Challenges in Rehabilitation of a Tetanus Patient With Severe Complications.

Cureus

December 2024

Department of Rehabilitation Medicine, School of Medicine, Showa University, Tokyo, JPN.

Tetanus is a rare but life-threatening neurological disorder caused by neurotoxins produced by . Although mortality rates have significantly decreased with modern intensive care, severe cases remain challenging due to prolonged Intensive Care Unit (ICU) stays, complications, and rehabilitation barriers. We report the case of an 81-year-old male with a history of hypertension and femoral neck fracture who developed severe tetanus following a contaminated forehead laceration.

View Article and Find Full Text PDF

Previously, we have developed a novel porous hydroxyapatite/poly l-lactic-co-caprolactone (HA/PLCL) composite sandwich beam as a new scaffold material for bone regeneration. This work presents the study of bending fracture mechanisms and microdamage of porous hydroxyapatite/poly L-lactic-acid (HA/PLLA) sandwich beam, in comparison to the previous developed HA/PLCL sandwich beam. Both beams were fabricated using the sandwich method in which the single porous composite beams were layered in between two porous polymer layers of their kind.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!