In the study, we present a quick potassium hydroxide heat treatment approach to optimize the "melon" framework of graphite carbon nitride and modify the surface properties by functionalization of hydroxyl groups. The hydroxyl groups functionalized g-CN samples have been applied as bifunctional materials for efficient elimination of diquat dibromide herbicide through synergistic adsorption/photodegradation processes. The structural characterizations of the as-obtained samples, combined with the detailed diquat dibromide herbicide adsorption study, reveal that the surface hydroxyl groups are the active sites for the diquat dibromide adsorption, which account for the much enhanced saturation adsorption capacities of 159.3 mg g at 25 °C and pH = 7 (more than 110 times improvement compared with pristine carbon nitride). Furthermore, the grafted surface hydroxyl groups and optimized planar structures endow the functionalized samples with the advantageous properties of efficient photoinduced charge transfer and separation, low interface resistance, and high photoresponse. Consequently, the deep mineralization of diquat dibromide herbicide was achieved over the bifunctional materials (total removal ratios were ~ 97.1% after 240 min visible-light irradiation). This work not only demonstrates the feasibility of hydroxyl groups functionalized graphite carbon nitride for elimination of herbicide pollutants but also offers new insights to better design efficient and durable materials for environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.08.011 | DOI Listing |
J Hazard Mater
January 2025
College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China. Electronic address:
Due to the high toxicity and increasing consumption, efficient removal of phenoxyacetic acid herbicides (PAAHs) from water is imperative. In current study, a new adsorbent was prepared by modifying porous carbon derived from disused floral foam with chitosan (CS) (ACFC). Density functional theory (DFT) calculation uncovered that the amino and hydroxyl groups in the introduced CS played a critical role in the efficient adsorption of ACFC towards PAAHs.
View Article and Find Full Text PDFCarbohydr Res
January 2025
Faculty of Chemistry, University of Wrocław, Wrocław, 50-383, Poland.
Triggered by the urgent need to tackle the global crisis of multidrug-resistant bacterial infections, in this work, we present a way to overcome chloramphenicol resistance by introducing modifications based on the glycosylation of its hydroxyl groups. The synthesized derivatives demonstrate complete resistance to the action of recombinant chloramphenicol acetyltransferase (CAT) from Escherichia coli and efficacy against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli ESBL, and Pseudomonas aeruginosa ATCC 27853. Glycosylation gives chloramphenicol an additional advantage - the stable glycosidic form is less toxic to human dermal fibroblasts and has significantly better water solubility than non-glycosylated chloramphenicol.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
A small but growing set of radical SAM (-adenosyl-l-methionine) enzymes catalyze the radical mediated dehydration or dehydrogenation of 1,2-diol substrates. In some cases, these activities can be interchanged via minor structural perturbations to the reacting components raising questions regarding the relative importance of hyperconjugation, proton circulation and leaving group stability in determining the reaction outcome. The present work describes trapping and electron paramagnetic resonance (EPR) characterization of an α-hydroxyalkyl radical intermediate during dehydration and dehydrogenation of cytosylglucuronic acid and its derivatives catalyzed by the radical SAM enzyme BlsE and its Glu189Ala mutant from the blasticidin S biosynthetic pathway.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias do Sul (UCS), Caxias do Sul 95070-560, Brazil.
Technical lignins are globally available and a sustainable feedstock. The unique properties of technical lignins suggest that these materials should have several industrial applications. The main proposal of this study is to evaluate the relationship between the structure and properties of two technical lignins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!