Recently, consumers concerns towards an environmental friendly food production are growing. The dairy sector contributes to the production of important greenhouse gases such as methane. The life cycle assessment (LCA) method enables to quantify the emissions and the use of resources throughout the entire life cycle of a product. The aim of the current study was to investigate the influence of performance parameters on the level of important environmental impacts (global warming potential (GWP), freshwater eutrophication (FE), terrestrial acidification (TA) and agricultural land occupation (ALO)) associated with milk production. Therein, the environmental impacts were analyzed using LCA considering two separate datasets (total, continuous) from Northern German farms throughout the years 2004-2013. Therefore, the performance parameters determining the level of environmental impacts were identified using the partial least square method. Thereby, a differentiated analysis among regions with various soil characteristics (Heath, Hill, Marsh) was conducted additionally. Further, linear mixed models were applied to each of the environmental impact categories. Energy-corrected milk yield (ECM), ECM from roughage, feed efficiency and the use of concentrates were identified as the most important determinants of environmental impacts. In general, an increase in productivity, especially an increase in ECM per cow and an increase in the amount of ECM produced per area of agricultural land accompanied with an improvement in environmental efficiency. The type of feed used had the major impact on the level of environmental impacts, whereby both concentrates and roughage had disadvantages. These results were in line with previous studies. Although, this study provides additional information relating the most important determinants of different environmental impacts, including a differentiated consideration of the relationship between performance parameters and environmental efficiency among regions. Further analyses on specific soil characteristics and their impact on environmental efficiency are recommended. In line with the concept of eco-efficiency, useful mitigation strategies in practice need to be applied depending on individual framework conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2020.111127DOI Listing

Publication Analysis

Top Keywords

environmental impacts
24
performance parameters
16
environmental efficiency
16
life cycle
12
environmental
12
level environmental
12
cycle assessment
8
influence performance
8
parameters environmental
8
agricultural land
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!