Programing of an Intravascular Immune Firewall by the Gut Microbiota Protects against Pathogen Dissemination during Infection.

Cell Host Microbe

Calvin, Phoebe, and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4A1, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4A1, Canada.

Published: November 2020

Eradication of pathogens from the bloodstream is critical to prevent disseminated infections and sepsis. Kupffer cells in the liver form an intravascular firewall that captures and clears pathogens from the blood. Here, we show that the catching and killing of circulating pathogens by Kupffer cells in vivo are promoted by the gut microbiota through commensal-derived D-lactate that reaches the liver via the portal vein. The integrity of this Kupffer cell-mediated intravascular firewall requires continuous crosstalk with gut commensals, as microbiota depletion with antibiotics leads to a failure of pathogen clearance and overwhelming disseminated infection. Furthermore, administration of purified D-lactate to germ-free mice, or gnotobiotic colonization with D-lactate-producing commensals, restores Kupffer cell-mediated pathogen clearance by the liver firewall. Thus, the gut microbiota programs an intravascular immune firewall that protects against the spread of bacterial infections via the bloodstream.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2020.07.014DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
intravascular immune
8
immune firewall
8
firewall gut
8
kupffer cells
8
intravascular firewall
8
kupffer cell-mediated
8
pathogen clearance
8
firewall
5
programing intravascular
4

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Background: In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated.

Research Questions: What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this?

Materials And Methods: Narrative review.

View Article and Find Full Text PDF

Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.

View Article and Find Full Text PDF

Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life.

View Article and Find Full Text PDF

The gut microbiome significantly impacts human health, yet cultivation challenges hinder its exploration. Here, we combine deep whole-metagenome sequencing with culturomics to selectively enrich for taxa and functional capabilities of interest. Using a modified commercial base medium, 50 growth modifications were evaluated, spanning antibiotics, physico-chemical conditions, and bioactive compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!