The mode of transmission of signals between plant cells is an important aspect of plant physiology. The main role in the generation of long-distance signals is played by changes in the membrane potential and cytoplasm calcium concentration, but the relationship between these responses evoked by the same stimuli in the same plant remains unknown. As one of the first plants that colonized land, the moss Physcomitrella patens is a suitable model organism for studying the evolution of signaling pathways in plants. Here, by the application of glutamate as a stimulus, we demonstrated that electrical but not calcium signals can be true carriers of information in long-distance signaling in Physcomitrella. The generation of electrical signals in a form of propagating transient depolarization seems to be dependent on the opening of calcium channels since the responses were reduced or totally blocked by calcium channel inhibitors. While the microelectrode measurements demonstrated the transmission of electric signals between leaf cells and juvenile cells (protonema), the fluorescence imaging of cytoplasmic calcium changes indicated that calcium response occurs only locally-at the site of glutamate application, and only in protonema cells. This study indicates different involvement of glutamate-induced electrical and calcium signals in cell-to-cell communication in these evolutionarily old terrestrial plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcaa109 | DOI Listing |
Photoacoustics
February 2025
NYU Langone Health, Tech4Health and Neuroscience Institutes, and Department of Ophthalmology, New York City, USA.
Measuring whole-brain distributed functional activity is an important unmet need in neuroscience, requiring high temporal resolution and cellular specificity across large volumes. Functional optoacoustic neuro-tomography (FONT) with genetically encoded calcium ion indicators is a promising approach towards this goal. However, it has not yet been applied in the near-infrared (NIR) range that provides deep penetration and low vascular background optimal for neuroimaging.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States.
Low-temperature synthesis is crucial for advancing sustainable manufacturing and accessing novel metastable phases. Metal hydrides have shown great potential in facilitating the reduction of oxides at low temperatures, yet the underlying mechanism─whether driven by H, H, or atomic H─remains unclear. In this study, we employ electrical transport measurements and first-principles calculations to investigate the CaH-driven reduction kinetics in epitaxial α-FeO thin films.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Université Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
The Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 401147, P. R. China.
Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).
View Article and Find Full Text PDFJACC Cardiovasc Imaging
January 2025
Department of Medicine, Lundquist Institute at Harbor-UCLA, Torrance, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!