Abrupt dietary changes, as can be common when managing horses, may lead to compositional changes in gut microbiota, which may result in digestive or metabolic disturbances. The aim of this study was to describe and compare the faecal microbiota of ponies abruptly changed from pasture grazing ad libitum to a restricted hay-only diet and vice versa. The experiment consisted of two, 14-day periods. Faecal samples were collected on day 0 and days 1-3,7,14 after abrupt dietary change from grass to hay and from hay to grass. Microbial populations were characterised by sequencing the V3-V4 region of the 16S rRNA gene using the Illumina MiSeq platform, 4,777,315 sequences were obtained from 6 ponies. Further analyses were performed to characterise the microbiome as well as the relative abundance of microbiota present. The results of this study suggest that the faecal microbiota of mature ponies is highly diverse, and the relative abundances of individual taxa change in response to abrupt changes in diet. The faecal microbiota of ponies maintained on a restricted amount of hay-only was similar to that of the ponies fed solely grass ad libitum in terms of richness and phylogenetic diversity; however, it differed significantly in terms of the relative abundances at distinct taxonomic levels. Class Bacilli, order Lactobacillales, family Lactobacillaceae, and genus Lactobacillus were presented in increased relative abundance on day 2 after an abrupt dietary change from hay to grass compared to all other experimental days (P <0.05). Abrupt changes from grass to hay and vice versa affect the faecal microbial community structure; moreover, the order of dietary change appears to have a profound effect in the first few days following the transition. An abrupt dietary change from hay to grass may represent a higher risk for gut disturbances compared to abrupt change from grass to hay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446798 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237869 | PLOS |
Animals (Basel)
December 2024
School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland.
Weaning in piglets presents significant physiological and immunological challenges, including gut dysbiosis and increased susceptibility to post-weaning diarrhoea (PWD). Abrupt dietary, environmental, and social changes during this period disrupt the intestinal barrier and microbiota, often necessitating antimicrobial use. Sustainable dietary strategies are critical to addressing these issues while reducing reliance on antimicrobials.
View Article and Find Full Text PDFInt J Endocrinol
December 2024
Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.
View Article and Find Full Text PDFJ Equine Vet Sci
December 2024
Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33011 Oviedo, Asturias, Spain. Electronic address:
Horses are hindgut fermenters that harbor a complex intestinal microbiota (IM) which provides key enzymes aiding in the breakdown of complex carbohydrates present in their herbivorous diet. Therefore, these animals are deeply dependent on their IM for digestion and nutrition. Consequently, IM imbalances may result in alteration of fermentation patterns with impact on the animal health and the risk of disease.
View Article and Find Full Text PDFAnimals (Basel)
September 2024
College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
In the original publication [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!