This article addresses the adaptive neural tracking control problem for a class of uncertain stochastic nonlinear systems with nonstrict-feedback form and prespecified tracking accuracy. Some radial basis function neural networks (RBF NNs) are used to approximate the unknown continuous functions online, and the desired controller is designed via the adaptive dynamic surface control (DSC) method and the gain suppressing inequality technique. Different from the reported works on uncertain stochastic systems, by combining some non-negative switching functions and dynamic surface method with the nonlinear filter, the design difficulty is overcome, and the control performance is analyzed by employing stochastic Barbalat's lemma. Under the constructed controller, the tracking error converges to the accuracy defined a priori in probability. The simulation results are shown to verify the availability of the presented control scheme.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2020.3012607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!