In this pilot-scale study, a wide range of potential emissions were evaluated for four types of additive manufacturing (AM) machines. These included material extrusion (using acrylonitrile-butadiene-styrene [ABS]); material jetting (using liquid photopolymer); powder bed fusion (using nylon); and vat photopolymerization (using liquid photopolymer) in an industrial laboratory setting. During isolated operation of AM machines, adjacent area samples were collected for compounds of potential concern (COPCs), including total and individual volatile organic compounds (VOCs), nano- and micron-sized particulate matter, and inorganic gases. A total of 61 compounds were also sampled using a canister followed by gas chromatography and mass spectrometry analysis. Most COPCs were not detected or were measured at concentrations far below relevant occupational exposure limits (OELs) during AM machine operations. Submicron particles, predominantly nanoparticles, were produced during material extrusion printing using ABS at approximately 12,000 particles per cubic centimeter (p cm) above background. After subtracting the mean background concentration, the mean concentration for material extrusion printing operations correlated with a calculated emission rate of 2.8 × 10 p min under the conditions tested. During processing of parts produced using material jetting or powder bed fusion, emissions were generally negligible, although concentrations above background of respirable and total dust were measured during processing of powder bed fusion parts. Results of this pilot-scale study indicate that airborne emissions associated with AM operations are variable, depending on printing and parts handling processes, raw materials, and ventilation characteristics. Although personal samples were not collected in this pilot-scale study, the results can be used to inform future exposure assessments. Based on the results of this evaluation, measurement of submicron particles emitted during material extrusion printing operations and dust associated with handling parts manufactured using powder bed fusion processes should be included in exposure assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15459624.2020.1798012DOI Listing

Publication Analysis

Top Keywords

material extrusion
16
powder bed
16
bed fusion
16
pilot-scale study
12
extrusion printing
12
emissions associated
8
associated operations
8
additive manufacturing
8
material jetting
8
liquid photopolymer
8

Similar Publications

Time Code for multifunctional 3D printhead controls.

Nat Commun

January 2025

Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.

Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.

View Article and Find Full Text PDF

Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.

View Article and Find Full Text PDF

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.

View Article and Find Full Text PDF

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!