Dynamics of the reaction CHI + O probed via infrared emission of CO, CO, OH and HCO.

Phys Chem Chem Phys

Department of Applied Chemistry and Institute of Molecular Science National Chiao Tung University, Hsinchu 30010, Taiwan. and Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan and Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.

Published: August 2020

AI Article Synopsis

  • The reaction CH2I + O2 is used to produce the Criegee intermediate CH2OO, but its detailed dynamics are not well studied.
  • Infrared emission from various reaction products was recorded, revealing vibrational distributions and energy levels that suggest multiple pathways for product formation.
  • Irradiating at different wavelengths (308 nm and 248 nm) affects the energy distribution and branching ratios of products like CO and OH, indicating that additional reaction channels may open at shorter wavelengths.

Article Abstract

The reaction CH2I + O2 has been widely employed recently for the production of the simplest Criegee intermediate CH2OO in laboratories, but the detailed dynamics of this reaction have been little explored. Infrared emission of several products of this reaction, initiated on irradiation of CH2I2 and O2 (∼8 Torr) in a flowing mixture at 308 or 248 nm, was recorded with a step-scan Fourier-transform spectrometer; possible routes of formation were identified according to the observed vibrational distribution of products and published theoretical potential-energy schemes. Upon irradiation at 308 nm, Boltzmann distributions of CO (v ≤ 5, J ≤ 19) with an average vibrational energy of 32 ± 3 kJ mol-1 and OH (v ≤ 3, J ≤ 5.5) with an average vibrational energy of 29 ± 4 kJ mol-1 were observed and assigned to the decomposition of HCOOH* to form CO + H2O and OH + HCO, respectively. The broadband emission of CO2 was simulated with two vibrational distributions of average energies (91 ± 4) and (147 ± 8) kJ mol-1 and assigned to be produced from the decomposition of HCOOH* and methylene bis(oxy), respectively. Upon irradiation of samples at 248 nm, the emission of OH and CO2 showed similar distributions with slightly greater energies, but the distribution of CO (v ≤ 11, J ≤ 19) became bimodal with average vibrational energies of (23 ± 4) and (107 ± 29) kJ mol-1, and branching (56 ± 5) : (44 ± 5). The additional large-v component is assigned to be produced from a secondary reaction HCO + O2 to form CO + HO2; HCO is a coproduct of OH. The branching between CO and OH is (50 ± 5) : (50 ± 5) at 308 nm and (64 ± 5) : (36 ± 4) at 248 nm, consistent with the mechanism according to which an additional channel to produce CO opens at 248 nm. Highly internally excited H2CO was also observed. With O2 at 16 Torr, the extrapolated nascent internal distributions are similar to those with O2 at 8 Torr except for a slight quenching effect.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01940bDOI Listing

Publication Analysis

Top Keywords

≤ ≤
12
average vibrational
12
dynamics reaction
8
infrared emission
8
≤ average
8
vibrational energy
8
energy mol-1
8
decomposition hcooh*
8
emission co2
8
assigned produced
8

Similar Publications

Vps4a Mediates a Unified Membrane Repair Machinery to Attenuate Ischemia/Reperfusion Injury.

Circ Res

January 2025

Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).

Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.

View Article and Find Full Text PDF

Advanced urothelial carcinoma (aUC) has a dismal prognosis, with a 5-year survival rate of approximately 10%. Platinum-based chemotherapy has been the backbone of the first-line treatment of aUC for over 40 years. Only in the last decade, the treatment of aUC has evolved and been enriched with new classes of drugs that demonstrated pivotal improvements in terms of oncological responses and, ultimately, survival.

View Article and Find Full Text PDF

The 26S proteasome complex is the hub for regulated protein degradation in the cell. It is composed of two biochemically distinct complexes: the 20S core particle with proteolytic active sites in an internal chamber and the 19S regulatory particle, consisting of a lid and base subcomplex. The base contains ubiquitin receptors and an AAA+ (ATPases associated with various cellular activities) motor that unfolds substrates prior to degradation.

View Article and Find Full Text PDF

Background: Endovascular abdominal aneurysm repair (EVAR) offers a less invasive approach to treating abdominal aortic aneurysms (AAA) compared to open repair. However, EVAR is associated with higher rates of reintervention. This study investigates the early and mid-term outcomes of patients who underwent late open conversion including aneurysmorrhaphy after EVAR at our institution.

View Article and Find Full Text PDF

This joint practice guideline/procedure standard was collaboratively developed by the European Association of Nuclear Medicine (EANM), the Society of Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neuro-Oncology (EANO), and the PET task force of the Response Assessment in Neurooncology Working Group (PET/RANO). Brain metastases are the most common malignant central nervous system (CNS) tumors. PET imaging with radiolabeled amino acids and to lesser extent [F]FDG has gained considerable importance in the assessment of brain metastases, especially for the differential diagnosis between recurrent metastases and treatment-related changes which remains a limitation using conventional MRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!