Reactive Oxygen Species-Responsive Liposomes via Boronate-Caged Phosphatidylethanolamine.

Bioconjug Chem

Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States.

Published: September 2020

Liposomes have proven to be effective nanocarriers due to their ability to encapsulate and deliver a wide variety of therapeutic cargo. A key goal of liposome research is to enhance control over content release at diseased sites. Though a number of stimuli have been explored for triggering liposomal release, reactive oxygen species (ROS), which have received significantly less attention, provide excellent targets due to their key roles in biology and overabundance in diseased cells. Here, we report a ROS-responsive liposome platform through the inclusion of lipid bearing a boronate ester headgroup and a quinone-methide (QM) generating self-immolative linker attached onto a dioleoylphosphatidylethanolamine (DOPE) lipid scaffold. Fluorescence-based dye release assays validated that this system enables release of both hydrophobic and hydrophilic contents upon hydrogen peroxide (HO) addition. Details of the release process were carefully studied, and data showed that oxidative removal of the boronate headgroup is sufficient to result in hydrophobic content release, while production of DOPE is needed for hydrophilic cargo leakage. These results showcase that lipid can serve as a promising ROS-responsive liposomal delivery platform for controlled release.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.0c00397DOI Listing

Publication Analysis

Top Keywords

reactive oxygen
8
content release
8
release
7
oxygen species-responsive
4
species-responsive liposomes
4
liposomes boronate-caged
4
boronate-caged phosphatidylethanolamine
4
phosphatidylethanolamine liposomes
4
liposomes proven
4
proven effective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!