Endotoxemia-induced acute kidney injury (AKI) is a common clinical condition that lacks effective treatments. Elabela (ELA) is a recently discovered kidney peptide hormone, encoded by the gene apela, and has been reported to improve cardio-renal outcomes in sepsis. However, ELA is a small peptide and is largely unsuitable for clinical use because of its short in vivo half-life. In the present study, we evaluated the potential renoprotective effects of a long-acting constant fragment (Fc)-ELA fusion protein in liposaccharide (LPS)-induced AKI in mice. LPS administration in mice for 5 days greatly lowered the gene expression of apela and impaired kidney function, as evidenced by elevated serum creatinine and the ratio of urine protein to creatinine. In addition, renal inflammation and macrophage infiltration were apparent in LPS-challenged mice. Treatment with the Fc-ELA fusion protein partially restored apela expression and attenuated the kidney inflammation. Moreover, LPS treatment induced reactive oxygen species (ROS) production and apoptosis in kidney HK-2 cells as well as in the mouse kidney, which were mitigated by ELA or Fc-ELA treatment. Finally, we found that ELA promoted the survival of HK-2 cells treated with LPS, and this action was abolished by LY204002, a PI3K/Akt inhibitor. Collectively, we have demonstrated that the Fc-ELA fusion protein has significant renoprotective activities against LPS-induced AKI in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463303PMC
http://dx.doi.org/10.1042/BSR20192397DOI Listing

Publication Analysis

Top Keywords

fusion protein
16
fc-ela fusion
12
kidney injury
8
lps-induced aki
8
aki mice
8
hk-2 cells
8
kidney
7
protein
5
mice
5
fc-elabela fusion
4

Similar Publications

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL) associated with favorable prognosis, but the optimal therapy for this subtype remains unclear. Profiling the genomic and pharmacological landscape of 194 pediatric ETV6::RUNX1 ALL cases, we uncover two transcriptomic clusters, C1 (61%) and C2 (39%). Compared to C1, the C2 subtype features higher white blood cell counts and younger age at diagnosis, as well as better early treatment responses.

View Article and Find Full Text PDF

Effective modulation of gene expression in plants is achievable through tools like CRISPR and RNA interference, yet methods for directly modifying endogenous proteins remain lacking. Here, we identify the E3 ubiquitin ligase E3TCD1 and develope a Targeted Condensation-prone-protein Degradation (TCD) strategy. The X-E3TCD1 fusion protein acts as a genetically engineered degrader, selectively targeting endogenous proteins prone to condensation.

View Article and Find Full Text PDF

Screening and Preparation of Nanobodies for SIGLEC-15 Detection.

Protein Expr Purif

January 2025

Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital of Chinese Academy of Medical Sciences, Langfang Campus, Langfang, 065001, China. Electronic address:

As an important member of the Siglec family, SIGLEC-15 plays an important role in osteoclast differentiation, bone remodeling, and tumor immune evasion. In the tumor microenvironment, SIGLEC-15 functions independently of the B7-H1/PD-1 pathway. In this study, the SIGLEC-15 fusion protein (SIGLEC-15-Fc) was successfully expressed and purified using a eukaryotic expression system.

View Article and Find Full Text PDF

The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.

View Article and Find Full Text PDF

Circadian rhythms driven by biological clocks regulate physiological processes in all living organisms by anticipating daily geophysical changes, thus enhancing environmental adaptation. Time-resolved serial multi-omic analyses in vivo, ex vivo, and in synchronized cell cultures have revealed rhythmic changes in the transcriptome, proteome, and metabolome, involving up to 50 % of the mammalian genome. Mitochondrial oxidative metabolism is central to cellular bioenergetics, and many nuclear genes encoding mitochondrial proteins exhibit both circadian and ultradian oscillatory expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!