N-Acyl Dibenzazepine Chemistry as Versatile Approach for Photoreversible Thiol-Ene Networks.

Macromol Rapid Commun

Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, Maslak, Istanbul, 34469, Turkey.

Published: October 2020

It is herein reported that a facile application of N-acyl dibenzazepine (ADBA) photochemistry for preparing photoreversible ADBA based thiol-ene networks. Crosslinking of the ADBA thiol-ene networks is successfully achieved by UV induced dimerization of ADBA groups at wavelengths above 300 nm while a subsequent deep UV exposure (λ = 250 nm) results in a well-defined cleavage of the crosslinks. The photochemical bonding and cleavage of the process has been determined and studied in detail by spectroscopic measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202000369DOI Listing

Publication Analysis

Top Keywords

thiol-ene networks
12
n-acyl dibenzazepine
8
dibenzazepine chemistry
4
chemistry versatile
4
versatile approach
4
approach photoreversible
4
photoreversible thiol-ene
4
networks reported
4
reported facile
4
facile application
4

Similar Publications

Compositions of ethylene glycol dicyclopentenyl ether methacrylate (EGDEMA), a vegetable oil based alkyl methacrylate (C13MA), and furfuryl methacrylate (FMA) were terpolymerized for dual-crosslinked networks with tailored mechanical and thermal properties. Specifically, initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) afforded materials with tailored glass transition temperature ( ) and incorporation of furan and norbornene functionalities within a single chain. The terpolymer with high furan and norbornene functionality (Ter2: = 0.

View Article and Find Full Text PDF

Photocrosslinkable formulations based on the radical thiol-ene reaction are considered better alternatives than methacrylated counterparts for light-based fabrication processes. This study quantifies differences between thiol-ene and methacrylated crosslinked hydrogels in terms of precursors stability, the control of the crosslinking process, and the resolution of printed features particularized for hyaluronic acid (HA) inks at concentrations relevant for bioprinting. First, the synthesis of HA functionalized with norbornene, allyl ether, or methacrylate groups with the same molecular weight and comparable degrees of functionalization is presented.

View Article and Find Full Text PDF

Tailoring the Reprocessability of Thiol-Ene Networks through Ring Size Effects.

Angew Chem Int Ed Engl

December 2024

Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan, 281-S4, Ghent, 9000, Belgium.

Recycling thermosetting materials presents itself as a major challenge in achieving sustainable material use. Dynamic covalent cross-linking of polymers has emerged as a viable solution that can combine the structural integrity of thermosetting materials with the (re-)processability of thermoplastics. Thioether linkages between polymer chains are quite common, and their use dates back to the vulcanization of rubbers.

View Article and Find Full Text PDF
Article Synopsis
  • A novel type of superabsorbent hydrogels was created by cross-linking hydrophilic poly(vinylphosphonates) through a process called photochemical reaction, which involves light to trigger the bonding.
  • The process included synthesizing specific copolymers using a rare earth metal technique, followed by modifications to introduce vinylphosphonic acid, leading to significant water absorption capabilities of up to 150g of water per g of hydrogel.
  • The hydrogels were shown to respond to changes in pH, with experiments demonstrating their ability to swell and deswell reversibly in response to acidic or basic environments, making them suitable for use as sensors in various applications.
View Article and Find Full Text PDF

Mimicking the Bone Extracellular Matrix through a Calcium Phosphate-Containing Thiol-Ene Cross-Linked Gelatin Composite.

Biomacromolecules

January 2025

Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, Ghent 9000, Belgium.

Hydroxyapatite (HAP) and amorphous calcium phosphate (ACP) nanoparticles were incorporated into a thiol-ene clickable gelatin network to elucidate to what extent osteogenic differentiation of human dental pulp- and adipose-derived stem cells (HDPSCs/HASCs) could be further boosted. ACP nanoparticles increased the specific surface area by 23% and reduced the density by 13% while maintaining a comparable particle size (ACP: 25 ± 3 nm; HAP: 27 ± 3 nm). Overall, the incorporation of ceramic nanoparticles did not significantly alter the mechanical properties of the ceramic-containing composites compared to the unsubstituted thiol-ene network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!