Only recently, post-polymerization modification reactions of unactivated polyacrylates have been emerging as an attractive alternative to utilizing reactive monomers, enabling the synthetic upcycling of these widely applied polymers. Within this contribution, the triazabicyclodecene-catalyzed transesterification of polyacrylates is reported, including the reaction kinetics and the broad scope for macromolecular design of functional copolyacrylates. More specifically, the transesterification is performed under equilibrium conditions with a set of primary alcohols whereby the reaction kinetics and the obtained conversion as a function of stoichiometric excess of alcohol are evaluated. The results show that the obtained conversion is dependent on the polarity of the solvent and of the alcohol. Through this approach, the transesterification degree can be accurately controlled by stoichiometry, enabling the precise modulation of the macromolecular structure. Finally, the utility of this approach is demonstrated to incorporate functional side chains that are incompatible with radical polymerization, to facilitate Diels-Alder and thiol-ene reactions, enabling access to a broad range of functional materials from simple polyacrylate homopolymer precursors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202000365 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!