Predicting and mapping high water table elevation in coastal landscapes is critical for both science application projects like inundation risk analysis and engineering projects like pond design and maintenance. Previous studies of water table mapping focused on the application of geostatistical methods, which cannot predict values beyond an observation spatial domain or generate an ideal pattern for regions with sparse measurements. In this study, we evaluated the multiple linear regression (MLR) and support vector machine (SVM) techniques for high water table prediction and mapping using fine spatial resolution lidar-derived Digital Elevation Model (DEM) data, and designed an application protocol of these two techniques for high water table mapping in a coastal landscape where groundwater, tide, and surface water are related. Testing results showed that SVM largely improved the high water table prediction with a mean absolute error (MAE) of 1.22 feet and root mean square error (RMSE) of 2.22 feet compared to the application of the ordinary Kriging method which could not generate a reasonable water table. MLR was also promising with a MAE of around 2 feet and RMSE of around 3 feet. The study suggests that both MLR and SVM are valuable alternatives to estimate high water table elevation in Florida. Fine resolution lidar DEMs are beneficial for high water table prediction and mapping.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gwat.13041DOI Listing

Publication Analysis

Top Keywords

water table
36
high water
28
table prediction
12
water
10
table
9
mapping high
8
dem data
8
table elevation
8
table mapping
8
techniques high
8

Similar Publications

Recent methane surges reveal heightened emissions from tropical inundated areas.

Nat Commun

December 2024

Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

Record breaking atmospheric methane growth rates were observed in 2020 and 2021 (15.2±0.5 and 17.

View Article and Find Full Text PDF

The height of the water-conducting fracture zones (WCFZ) is crucial for ensuring safe coal mining beneath aquifers, particularly considering the secondary development of the WCFZ in upper seams due to repeated mining in close distance coal seams. Accurately predicting this height is essential for mine safety, groundwater protection, and optimal coal resource use. This study compiles extensive measured data from various mining areas in China to analyze the coupling relationship between the WCFZ development height and six influencing factors: mining thickness, mining depth, coal seam spacing, hard rock lithology ratio, and the slope length of working face.

View Article and Find Full Text PDF

Applying Ra and Ra to Trace Lateral Groundwater Discharge into Lake Qinghai, China.

Ground Water

December 2024

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.

Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of Ra and Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai.

View Article and Find Full Text PDF

Aims: Understanding the response of herbaceous plants to habitat changes and the mechanisms of vegetation succession is crucial to the theoretical foundation of the conservation of local vegetation.

Methods: Plots were established at elevations of 1900-2200m, 2200-2500m, and 2500-2800m on both shady and sunny slopes. Four statistical methods 2×2 contingency table χ-test, Spearman's rank correlation coefficient, AC joint coefficient, 17 and Ochiai Index, were employed to analyze the species composition and interspecific associations within each elevation band and aspect.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!