Plasmacytoid dendritic cells (pDCs) are crucial for corneal homeostasis through secretion of various anti-angiogenic molecules and growth factors. Due to its avascular nature, only a limited number of adoptively transferred cells home to the cornea, when administered systemically. In addition, local adoptive transfer of cells poses several challenges and the clinical application of commonly used techniques is limited. Herein, we detail a novel approach for local adoptive transfer of pDCs to the cornea for the treatment of corneal wounds. This approach utilizes a commonly used fibrin sealant as a means of transferring previously isolated cells locally on the cornea. The technique is simple, reproducible, and is accompanied with successful transfer and integration of a substantial number of the cells to the cornea. Application of this approach to transfer pDCs promotes corneal wound healing. Furthermore, this technique can be applied for adoptive transfer of any cell of interest to the cornea.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662811 | PMC |
http://dx.doi.org/10.1007/978-1-0716-0845-6_16 | DOI Listing |
BMC Cancer
January 2025
Department of Hematology, Daping Hospital, Third Military Medical University (Army Medical University), No.10, Daping Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
Background: Relapsed/refractory classic Hodgkin lymphoma (R/R cHL) remains challenging to treat, and anti-CD30 chimeric antigen receptor T (CAR-T) cell therapy may be effective. This meta-analysis investigates the efficacy and safety of anti-CD30 CAR-T cell therapy for treating R/R cHL.
Methods: A systematic literature search of PubMed, Cochrane, Embase, ClinicalTrials.
J Immunother Cancer
January 2025
Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
Background: Adaptive cellular therapy (ACT), particularly chimeric antigen receptor (CAR)-T cell therapy, has been successful in the treatment of hemopoietic malignancies. However, poor trafficking of administered effector T cells to the tumor poses a great hurdle for this otherwise powerful therapeutic approach in solid cancers. Our previous study revealed that targeting CD93 normalizes tumor vascular functions to improve immune checkpoint blockade therapy.
View Article and Find Full Text PDFUnlabelled: SHP1 (PTPN6) and SHP2 (PTPN11) are closely related protein-tyrosine phosphatases (PTPs), which are autoinhibited until their SH2 domains bind paired tyrosine-phosphorylated immunoreceptor tyrosine-based inhibitory/switch motifs (ITIMs/ITSMs). These PTPs bind overlapping sets of ITIM/ITSM-bearing proteins, suggesting that they might have some redundant functions. By studying T cell-specific single and double knockout mice, we found that SHP1 and SHP2 redundantly restrain naïve T cell differentiation to effector and central memory phenotypes, with SHP1 playing the dominant role.
View Article and Find Full Text PDFThe role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases.
View Article and Find Full Text PDFTransplant Direct
February 2025
Department of Surgery, Comprehensive Transplant Center, and the College of Medicine, The Ohio State University, Columbus, OH.
Background: Alloprimed antibody-suppressor CXCR5CD8 T cells (CD8 T cells) downregulate alloantibody production, mediate cytotoxicity of IgG B cells, and prolong allograft survival. The purpose of this investigation was to determine which immune-cell subsets are susceptible to CD8 T cell-mediated cytotoxicity or noncytotoxic suppression.
Methods: Alloprimed immune-cell subsets were evaluated for susceptibility to CD8 T cell-mediated in vitro cytotoxicity and/or suppression of intracellular cytokine expression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!