Lactate, the product of aerobic glycolysis, plays a dual role as fuel and intercellular signal in inflammation, immune evasion, and tumor progression. The production of lactate by macrophages has been associated with their polarization and function. Here we describe imaging protocols to characterize the metabolism of cultured human macrophages using a genetically encoded fluorescent sensor-specific for lactate. By superfusing cultures with increasing lactate concentrations and pharmacological inhibitors, it is possible to estimate the kinetic parameters of monocarboxylate transporter 4 (MCT4) and lactate production. Practical advice is given regarding sensor expression, imaging, and data analysis. The spatiotemporal resolution of this technique is amenable to the study of fast events at the single-cell level in different immune and other cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-0802-9_2DOI Listing

Publication Analysis

Top Keywords

macrophages genetically
8
genetically encoded
8
lactate
5
monitoring lactate
4
lactate dynamics
4
dynamics individual
4
individual macrophages
4
encoded probe
4
probe lactate
4
lactate product
4

Similar Publications

Single-nucleotide polymorphisms in genes associated with the vitamin D pathway related to clinical and therapeutic outcomes of American tegumentary leishmaniasis.

Front Cell Infect Microbiol

January 2025

Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.

Background: The vitamin D pathway contributes to the microbicidal activity of macrophages against infection. In addition to induction of this pathway, interferon-gamma (IFNγ), interleukin (IL)-15, and IL32γ are part of a network of pro-inflammatory cytokines. The aim of this study was to evaluate single-nucleotide polymorphisms (SNPs) in the components of the vitamin D pathway and associated cytokine genes that could be related to resistance or susceptibility to American tegumentary leishmaniasis (ATL).

View Article and Find Full Text PDF

The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO).

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by high disability and mortality rates. Over the past three decades, therapeutic outcomes have plateaued, underscoring the critical need for innovative therapeutic targets. Solute carrier (SLC) family transporters have been implicated in the malignant progression of a variety of tumors, however, their specific role in osteosarcoma remains poorly understood.

View Article and Find Full Text PDF

Background: The mechanism of palmitoylation in the pathogenesis of Alzheimer's disease (AD) remains unclear.

Methods: This study retrieved AD data sets from the GEO database to identify palmitoylation-associated genes (PRGs). This study applied WGCNA along with three machine learning algorithms-random forest, LASSO regression, and SVM-RFE-to further select key PRGs (KPRGs).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy plays a critical role in the treatment of B-cell hematologic malignancies. The combination of PD-1 inhibitors and CAR-T has shown encouraging results in treating patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, there are still cases where treatment is ineffective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!