Strains 6105 and 6106, recovered from colonized patients in a hospital in Tel-Aviv, Israel, were compared with currently known species of the genus Citrobacter by a polyphasic taxonomic approach. Strains were characterized by whole-genome sequencing, 16S rRNA and recN gene sequencing, multilocus sequence analysis (MLSA), average nucleotide identity (ANI), Genome-to-Genome Distance Calculator (GGDC), and biochemical tests. The location and genetic surrounding of antibiotic resistance genes were investigated, and antibiotic susceptibility profiles were determined by broth microdilution or agar dilution methods. Phylogenetic analysis based on recN and MLSA revealed that both strains formed a distinct cluster from all currently recognized species. The ANI and GGDC were 90.7% and 54.3% with Citrobacter farmeri, respectively. The ability to metabolize various compounds also differentiated both strains from closely related Citrobacter species. Chromosomes of the isolates contained locus encoding a novel class A β-lactamase (TEL-1; 90.5% amino acid identity with CdiA of Citrobacter koseri) plus a LysR-like transcriptional regulator (TEL-R) and an ~ 25.5-kb mcr-9 mosaic region. The direct mcr-9 context matched with those previously identified in several plasmids and chromosomes of diverse Enterobacteriaceae, yet similarity with the plasmidic loci extended further. Untypeable plasmids, pCTEL-2 (~ 235 kb) and pCTEL-1 (~ 114 kb), devoid of resistance genes, were identified in the strains. The isolates were non-susceptible to β-lactams. The name Citrobacter telavivum sp. nov. is proposed, with 6105(CECT 9989 or DSM 110286) as the type strain. C. telavivum may represent a bacterial species adapting to hospital settings, able to disseminate and acquire antimicrobial resistance genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10096-020-04003-6 | DOI Listing |
ISME J
January 2025
State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China.
Protozoa, as primary predators of soil bacteria, represent an overlooked natural driver in the dissemination of antibiotic resistance genes. However, the effects of protozoan predation on antibiotic resistance genes dissemination at the community level, along with the underlying mechanisms, remain unclear. Here we used fluorescence-activated cell sorting, qPCR, combined with metagenomics and reverse transcription quantitative PCR, to unveil how protozoa (Colpoda steinii and Acanthamoeba castellanii) influence the plasmid-mediated transfer of antibiotic resistance genes to soil microbial communities.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.
Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.
PLoS One
January 2025
Department of Chemistry, Ashoka University, Sonipat, Haryana, India.
Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.
View Article and Find Full Text PDFDiscov Oncol
January 2025
West China School of Medicine, Sichuan University, Chengdu, China.
Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!