Understanding charge transport in DNA molecules is a long-standing problem of fundamental importance across disciplines. It is also of great technological interest due to DNA's ability to form versatile and complex programmable structures. Charge transport in DNA-based junctions has been reported using a wide variety of set-ups, but experiments so far have yielded seemingly contradictory results that range from insulating or semiconducting to metallic-like behaviour. As a result, the intrinsic charge transport mechanism in molecular junction set-ups is not well understood, which is mainly due to the lack of techniques to form reproducible and stable contacts with individual long DNA molecules. Here we report charge-transport measurements through single 30-nm-long double-stranded DNA (dsDNA) molecules with an experimental set-up that enables us to address individual molecules repeatedly and to measure the current-voltage characteristics from 5 K up to room temperature. Strikingly, we observed very high currents of tens of nanoamperes, which flowed through both homogeneous and non-homogeneous base-pair sequences. The currents are fairly temperature independent in the range 5-60 K and show a power-law decrease with temperature above 60 K, which is reminiscent of charge transport in organic crystals. Moreover, we show that the presence of even a single discontinuity ('nick') in both strands that compose the dsDNA leads to complete suppression of the current, which suggests that the backbones mediate the long-distance conduction in dsDNA, contrary to the common wisdom in DNA electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41565-020-0741-2DOI Listing

Publication Analysis

Top Keywords

charge transport
20
double-stranded dna
8
dna molecules
8
transport
5
dna
5
backbone charge
4
transport double-stranded
4
dna understanding
4
charge
4
understanding charge
4

Similar Publications

A robust MPPT framework based on GWO-ANFIS controller for grid-tied EV charging stations.

Sci Rep

December 2024

Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.

As electric vehicles gain popularity, there has been a lot of interest in supporting their continued development with the aim of enhancing their dependability, environmental advantages, and charging efficiency. The scheduling of navigation and charging for electric vehicles is among the most well-known research topics. For optimal navigation and charging scheduling, the coupled network state between the transportation and power networks must be met; moreover, the scheduling outcomes might significantly impact these networks.

View Article and Find Full Text PDF

Secondary Transport Mechanisms in Amino Acid Fed Enhanced Biological Phosphorus Removal.

Chemosphere

December 2024

Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, New Mexico, 87131, United States. Electronic address:

Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

In order to broaden the working voltage (1.23 V) of aqueous supercapacitors, a high-performance asymmetric supercapacitor with a working voltage window reaching up to 2.1 V is assembled using a nanorod-shaped molybdenum trioxide (MoO) negative electrode and an activated carbon (AC) positive electrode, as well as a sodium sulfate-ethylene glycol ((NaSO-EG) electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!