Linac based radiosurgery to multiple metastases is commonly planned with volumetric modulated arc therapy (VMAT) as it effectively achieves high conformality to complex target arrangements. However, as the number of targets increases, VMAT can struggle to block between targets, which can lead to highly modulated and/or nonconformal multi-leaf collimator (MLC) trajectories that unnecessarily irradiation of healthy tissue. In this study we introduce, describe, and evaluate a treatment planning technique called Conformal Arc Informed VMAT (CAVMAT), which aims to reduce the dose to healthy tissue while generating highly conformal treatment plans. CAVMAT is a hybrid technique which combines the conformal MLC trajectories of dynamic conformal arcs with the MLC modulation and versatility of inverse optimization. CAVMAT has 3 main steps. First, targets are assigned to subgroups to maximize MLC blocking between targets. Second, arc weights are optimized to achieve the desired target dose, while minimizing MU variation between arcs. Third, the optimized conformal arc plan serves as the starting point for limited inverse optimization to improve dose conformity to each target. Twenty multifocal VMAT cases were replanned with CAVMAT with 20Gy applied to each target. The total volume receiving 2.5[cm], 6[cm], 12[cm], and 16[cm], conformity index, treatment delivery time, and the total MU were used to compare the VMAT and CAVMAT plans. In addition, CAVMAT was compared to a broad range of planning strategies from various institutions (108 linear accelerator based plans, 14 plans using other modalities) for a 5-target case utilized in a recent plan challenge. For the linear accelerator-based plans, a plan complexity metric based on aperture opening area and perimeter, total monitor units (MU), and MU for a given aperture opening was utilized in the plan challenge scoring algorithm to compare the submitted plans to CAVMAT. After re-planning the 20 VMAT cases, CAVMAT reduced the average V[cm] by 25.25 ± 19.23%, V[cm] by 13.68 ± 18.97%, V[cm] by 11.40 ± 19.44%, and V[cm] by 6.38 ± 19.11%. CAVMAT improved conformity by 3.81 ± 7.57%, while maintaining comparable target dose. MU for the CAVMAT plans increased by 24.35 ± 24.66%, leading to an increased treatment time of 2 minutes. For the plan challenge case, CAVMAT was 1 of 12 linac based plans that met all plan challenge scoring criteria. Compared to the average submitted VMAT plan, CAVMAT increased the VGy[%] of healthy tissue (Brain-PTV) by roughly 3.42%, but in doing so was able to reduce the VGy[%] by roughly 3.73%, while also reducing VGy[%] VGy[%], and VGy[%] The CAVMAT technique successfully eliminated insufficient MLC blocking between targets prior to the inverse optimization, leading to less complex treatment plans and improved tissue sparing. Tissue sparing, improved conformity, and decreased plan complexity at the cost of slight increase in treatment delivery time indicates CAVMAT to be a promising method to treat brain metastases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meddos.2020.06.001DOI Listing

Publication Analysis

Top Keywords

plan challenge
16
cavmat
14
conformal arc
12
healthy tissue
12
inverse optimization
12
plans
9
treatment planning
8
arc informed
8
volumetric modulated
8
modulated arc
8

Similar Publications

Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.

View Article and Find Full Text PDF

: The COVID-19 health crisis challenged healthcare systems around the world, leading to restrictions in access to face-to-face healthcare services, and forcing rapid adaptation to telehealth services. At present, there is a gap in the functioning of this adaptation in drug-dependence centres. The present study analyses, over four years, care indicators on the care modality (face-to-face vs.

View Article and Find Full Text PDF

Over the last 15 years, there has been substantial growth in the installation of medical cyclotrons. This is mainly due to the increased demand for the production of positron emission tomography radiopharmaceuticals. In every country, there is a regulatory body that regulates the uses of medical cyclotron intending to protect occupational workers, the public, and the environment.

View Article and Find Full Text PDF

Ultrasound-Triggered Oxygen Release System for Accelerating Wound Healing of Diabetic Foot Ulcers.

Adv Healthc Mater

January 2025

Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.

Diabetic foot ulcer (DFU) is a common complication of chronic diabetes mellitus. Oxygen plays a critical role in the healing process of DFU wounds by promoting cell migration and neovascularization. However, clinical hyperbaric oxygen (HBO) therapy predominantly uses systemic oxygen administration, posing challenges in inadequate DFU local oxygen penetration and potential ectopic organs oxygen toxicity.

View Article and Find Full Text PDF

Background: Adolescent idiopathic scoliosis, a complex three-dimensional spine deformity, presents a formidable challenge for orthopedic residents in understanding its anatomy and surgical strategies. The aim of this study is to investigate the impact of three-dimensional printing (3DP) models in enhancing the comprehension of adolescent idiopathic scoliosis among orthopedic residents.

Methods: Forty orthopedic residents were randomly divided into two groups, the first group received lectures that were augmented with 3DP models illustrating five cases of adolescent idiopathic scoliosis, along with corresponding X-ray and CT images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!