Tendon's viscoelastic behaviors are important to the tissue mechanical function and cellular mechanobiology. When loaded in longitudinal tension, tendons often have a large Poisson's ratio (ν>2) that exceeds the limit of incompressibility for isotropic material (ν=0.5), indicating that tendon experiences volume loss, inducing poroelastic fluid exudation in the transverse direction. Therefore, transverse poroelasticity is an important contributor to tendon material behavior. Tendon hydraulic permeability which is required to evaluate the fluid flow contribution to viscoelasticity, is mostly unavailable, and where available, varies by several orders of magnitude. In this manuscript, we quantified the transverse poroelastic material parameters of rat tail tendon fascicles by conducting transverse osmotic loading experiments, in both tension and compression. We used a multi-start optimization method to evaluate the parameters using biphasic finite element modeling. Our tendon samples had a transverse hydraulic permeability of 10 to 10 mm. (Ns) and showed a significant tension-compression nonlinearity in the transverse direction. Further, using these results, we predict hydraulic permeability during longitudinal (fiber-aligned) tensile loading, and the spatial distribution of fluid flow during osmotic loading. These results reveal novel aspects of tendon mechanics and can be used to study the physiomechanical response of tendon in response to mechanical loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438606PMC
http://dx.doi.org/10.1016/j.jbiomech.2020.109892DOI Listing

Publication Analysis

Top Keywords

osmotic loading
12
hydraulic permeability
12
transverse poroelastic
8
tendon
8
finite element
8
element modeling
8
transverse direction
8
fluid flow
8
transverse
6
loading
5

Similar Publications

ATP-binding cassette G23 is required for Arabidopsis seed coat suberization.

Plant Sci

December 2024

Department of Life Science, Sogang University, Seoul 04107, Republic of Korea. Electronic address:

Suberin is an extracellular hydrophobic polymer deposited in seed coats that acts as a barrier to regulate the movement of ions, water, and gases, and protects seeds against pathogens. However, the molecular mechanisms underlying suberin deposition in the seed coat remain unknown. In this study, the in planta role of ATP-binding cassette G23 (ABCG23) was investigated in the Arabidopsis seed coat.

View Article and Find Full Text PDF

As nanocarriers of a new generation, biomimetic nanovesicles are an emerging class of therapeutic tools whose surface is integrated or fabricated with biomaterials capable of mimicking the biological features and functions of native cells. Thanks to this, biomimetic nanovesicles, in particular, those made by plasma membrane moieties, possess greatly improved biocompatibility, high target specificity, a long retention time, and minimal undesired immune responses. For these reasons, a multitude of progenitor cells including cancer ones were employed as templates to generate biomimetic or membrane-camouflaged nanovesicles hosting different therapeutic compounds.

View Article and Find Full Text PDF

A porohyperelastic scheme targeted at High-Performance Computing frameworks for the simulation of the intervertebral disc.

Comput Methods Programs Biomed

February 2025

Department of Computer Applications in Science and Engineering (CASE), Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1-3, Barcelona, 08034, Spain; ELEM Biotech SL, Pier01 - Palau de Mar - Plaça Pau Vila, 1, Barcelona, 08003, Spain.

Background And Objective: The finite element method is widely used for studying the intervertebral disc at the organ level due to its ability to model complex geometries. An indispensable requirement for proper modelling of the intervertebral disc is a reliable porohyperelastic framework that captures the elaborate underlying mechanics. The increased complexity of such models requires significant computational power that is available within high-performance computing systems.

View Article and Find Full Text PDF

Development of transferosomes for topical ocular drug delivery of curcumin.

Eur J Pharm Biopharm

December 2024

Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand. Electronic address:

Background: Transferosomes (TFS) are ultra-deformable elastic bilayer vesicles that have previously been used to enhance gradient driven penetration through the skin. This study aimed to evaluate the potential of TFS for topical ocular drug delivery and to compare their penetration enhancing properties in different ocular tissues.

Methods: Curcumin-loaded TFS were prepared using Tween 80 as the edge activator.

View Article and Find Full Text PDF

Cyclodextrin-Cholesterol Alone or in Combination With Cyclodextrin-Vitamin E Improves Bull Sperm Cryopreservation in a Soybean Lecithin Extender.

Reprod Domest Anim

October 2024

Department of Veterinary Sciences, Laboratoire Environnement, Santé et Production Animale (LESPA), Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna, Algeria.

Combining cholesterol-loaded methyl-β-cyclodextrin (CD-CHL) with vitamin E-loaded methyl-β-cyclodextrin (CD-Vit E) to combat cold shock and oxidative stress during sperm cryopreservation in soybean lecithin extenders remains unexplored. Thus, the current study aimed to investigate the effect of treating bull sperm with CD-CHL and CD-Vit E prior to cryopreservation in a soybean lecithin extender. Sperm collected from eight fertile bulls were pooled and split into six aliquots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!