Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, and the modification at their redox center is an interesting strategy to overcome such harmful activity.

Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β- lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity.

Methods: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media.

Results: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, compounds 3 and 4 being the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC values in the range 2.90-12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte.

Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406416666200817164308DOI Listing

Publication Analysis

Top Keywords

cancer cell
8
cell lines
8
semisynthetic hydrazones
8
electrochemical studies
8
active cancer
8
hl-60 cells
8
cells compound
8
naphthoquinone-based hydrazone
4
hydrazone hybrids
4
hybrids synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!