Mammary cancer is a common neoplasm in women, dogs, and cats that still represents a therapeutic challenge. Wnt/β-catenin and Hippo pathways are involved in tumor progression, cell differentiation, and metastasis. The aim of this study was to evaluate mRNA and protein expression of molecules involved in these pathways in human (HBC), canine (CMT), and feline mammary tumors (FMT). Real-time quantitative polymerase chain reaction (qPCR) for , , , , , and , western blotting for YAP, TAZ, and β-catenin, and immunohistochemistry for estrogen receptor (ER), progesterone receptor (PR), ERBB2, β-catenin, and YAP/TAZ were performed on mammary tumor tissues. The protein expression of active β-catenin was higher in tumors than in healthy tissues in all 3 species. The mRNA expression of the downstream gene was increased in HBC ER and CMTs compared to healthy tissues. Membranous and cytoplasmic protein expression of β-catenin were strongly negatively correlated in all 3 species. Tumors showed an increased protein expression of YAP/TAZ when compared to healthy tissues. Notably, YAP/TAZ expression was higher in triple negative breast cancers when compared to HBC ER and in FMTs when compared to CMTs. The mRNA expression of , , , , and was not different between tumors and healthy mammary gland in the 3 species. This study demonstrates deregulation of Wnt/β-catenin and Hippo pathways in mammary tumors, which was more evident at the protein rather than the mRNA level. Wnt/β-catenin and Hippo pathways seem to be involved in mammary carcinogenesis and therefore represent interesting therapeutic targets that should be further investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0300985820948823 | DOI Listing |
Curr Cardiol Rep
January 2025
Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.
Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.
J Clin Endocrinol Metab
January 2025
Department of Pediatrics, Ribeirao Preto Medical School - University of Sao Paulo, Ribeirao Preto, Brazil.
Background: Adrenocortical cancer (ACC) is rare and aggressive, with YAP1 overexpression associated with poor outcomes in pediatric patients. In this study, we investigated the mechanisms by which YAP1 drives ACC progression and explored it as a potential target therapy.
Methods: YAP1 expression and methylation in ACC were analyzed from pediatric and adult cohorts.
Invest Ophthalmol Vis Sci
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Homburg/Saar, Germany, Saarland University, Homburg/Saar, Germany.
Purpose: This study evaluates the microRNA (miRNA) expression profile in primary limbal epithelial cells (pLECs) of patients with aniridia.
Methods: Primary human LECs were sampled and isolated from 10 patients with aniridia and 10 healthy donors. The miRNA profile was analyzed using miRNA microarrays.
Cell Mol Life Sci
January 2025
Cam-Su Genomic Resource Center, Medical College of Soochow University, Suzhou, China.
The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, P. R. China.
The protein corona effect refers to the phenomenon wherein nanomaterials in the bloodstream are coated by serum proteins, yet how protein coronated nanomaterials interact with blood vessels and its toxicity implications remain poorly understood. In this study, we investigated protein corona-related vessel toxicity by using an all-humanized assay integrating blood vessel organoids and patient-derived serum. Initially, we screened various nanomaterials to discern how parameters including size, morphology, hydrophobicity, surface charge, and chirality-dependent protein corona difference influence their uptake by vessel organoids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!