Ameliorated therapy based on the tumor microenvironment is becoming increasingly popular, yet only a few methods have achieved wide recognition. Herein, targeting multifunctional hydrophilic nanomicelles, AgBiS@DSPE-PEG-FA (ABS-FA), were obtained and employed for tumor treatment. In a cascade amplification mode, ABS-FA exhibited favorable properties of actively enhancing computed tomography/infrared (CT/IR) imaging and gently relieving ambient oxygen concentration by cooperative photothermal and sonodynamic therapy. Compared with traditional BiS nanoparticles, the CT imaging capability of the probe was augmented (43.21%), and the photothermal conversion efficiency was increased (33.1%). Furthermore, remarkable ultrasonic dynamic features of ABS-FA were observed, with increased generation of reactive oxygen species (24.3%) being obtained compared to Ce6, a commonly used sonosensitizer. Furthermore, ABS-FA exhibited obvious inhibitory effects on HeLa cell migration at 6 μg/mL, which to some extent, demonstrated its suppressive effect on tumor growth. A lower dose, laser and ultrasonic power, and shorter processing time endowed ABS-FA with excellent photothermal and sonodynamic effects. By mild cascade mode, the hypoxic condition of the tumor site was largely improved, and a suitable oxygen-rich environment was provided, thereby endowing ABS-FA with a superior synergistically enhanced treatment effect compared with the single-mode approach, which ultimately realized the purpose of "one injection, multiple treatment". Moreover, our data showed that ABS-FA was given with a biological safety profile while harnessing . Taken together, as a synergistically enhanced medical diagnosis and treatment method, the one-for-all nanoplatform will pave a new avenue for further clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c10475 | DOI Listing |
J Mater Chem B
July 2024
Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
The urgent need to curb the rampant rise in cancer has impelled the rapid development of nanomedicine. Under the above issue, transition metal compounds have received special attention considering their physicochemical and biochemical properties. However, how to take full advantage of the valuable characteristics of nanomaterials based on their spatial structures and chemical components for synergistic tumor therapy is a worthwhile exploration.
View Article and Find Full Text PDFAnal Chem
November 2023
Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, and Center for Molecular Imaging Probe of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
The activable NIR-based phototheranostic nanoplatform (NP) is considered an efficient and reliable tumor treatment due to its strong targeting ability, flexible controllability, minimal side effects, and ideal therapeutic effect. This work describes the rational design of a second near-infrared (NIR-II) fluorescence imaging-guided organic phototheranostic NP (FTEP-TBFc NP). The molecular-engineered phototheranostic NP has a sensitive response to glutathione (GSH), generating hydrogen sulfide (HS) gas, and delivering ferrocene molecules in the tumor microenvironment (TME).
View Article and Find Full Text PDFAnal Chem
November 2023
State Key Laboratory of Analytical for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Xianlin Ave 163, Nanjing, Jiangsu 210023, China.
Combining targeting ability, imaging function, and photothermal/photodynamic therapy into a single agent is highly desired for cancer theranostics. Herein, we developed a one-for-all nanoplatform with N/P/S-codoped fluorescent carbon nanodots (CNDs) for tumor-specific phototheranostics. The CNDs were prepared via a one-pot hydrothermal process using cancer cells as sources of carbon, nitrogen, phosphorus, and sulfur.
View Article and Find Full Text PDFBiomater Sci
December 2023
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
Imaging-guided therapy holds great potential for enhancing therapeutic performance in a personalized way. However, it is still challenging to develop appropriate multifunctional materials to overcome the limitations of current all-in-one theranostic agents. In this study, we developed a one-for-all theranostic nanoplatform called Mn(II)-hemoporfin MOFs, designed specifically for MRI-guided sonodynamic tumor therapy.
View Article and Find Full Text PDFNat Commun
October 2023
Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
Gadolinium (Gd)-coordinated texaphyrin (Gd-Tex) is a promising radiosensitizer that entered clinical trials, but temporarily fails largely due to insufficient radiosensitization efficacy. Little attention has been given to using nanovesicles to improve its efficacy. Herein, Gd-Tex is transformed into building blocks "Gd-Tex-lipids" to self-assemble nanovesicles called Gd-nanotexaphyrins (Gd-NTs), realizing high density packing of Gd-Tex in a single nanovesicle and achieving high Gd-Tex accumulation in tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!