Glioblastoma multiforme (GBM) is the most aggressive glioma of the primary central nervous system. Due to the lack of effective treatment options, the prognosis for patients remains bleak. Fibroblast activation protein alpha (FAP), a 170 kDa type II transmembrane serine protease was observed to be expressed on glioma cells and within the glioma tumor microenvironment. To understand the utility of targeting FAP in this tumor type, the immuno-PET radiopharmaceutical [Zr]Zr-Df-Bz-F19 mAb was prepared and Lindmo analysis was used for its in vitro evaluation using the U87MG cell line, which expresses FAP endogenously. Lindmo analysis revealed an association constant (K) of 10 M and an immunoreactivity of 52%. Biodistribution studies in U87MG tumor-bearing mice revealed increasing radiotracer retention in tumors over time, leading to average tumor-to-muscle ratios of 3.1, 7.3, 7.2, and 8.3 at 2, 24, 48 and 72 h, respectively. Small animal PET corroborated the biodistribution studies; tumor-to-muscle ratios at 2, 24, 48, and 72 h were 2.0, 5.0, 6.1 and 7.8, respectively. Autoradiography demonstrated accumulated activity throughout the interior of FAP tumors, while sequential tumor sections stained positively for FAP expression. Conversely, FAP tissues retained minimal radioactivity and were negative for FAP expression by immunohistochemistry. These results demonstrate FAP as a promising biomarker that may be exploited to diagnose and potentially treat GBM and other neuroepithelial cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464128PMC
http://dx.doi.org/10.3390/molecules25163672DOI Listing

Publication Analysis

Top Keywords

fibroblast activation
8
activation protein
8
protein alpha
8
fap
8
lindmo analysis
8
biodistribution studies
8
tumor-to-muscle ratios
8
fap expression
8
imaging fibroblast
4
alpha expression
4

Similar Publications

Obstructive sleep apnea (OSA) is increasingly recognized for its link to idiopathic pulmonary fibrosis (IPF), though the underlying mechanisms remain poorly understood. Histone lysine demethylase 6B (KDM6B) may either prevent or promote organ fibrosis, but its specific role in IPF is yet to be clarified. This study aimed to investigate the function and mechanisms of KDM6B in IPF and the exacerbating effects of OSA.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a high-mortality lung disease with limited treatment options, highlighting the need for new therapies. Cyclin-dependent kinase 8 (CDK8) is a promising target due to its role in regulating transcription via the TGF-β/Smad pathway, though CDK8 inhibitors have not been thoroughly studied for PF. This study aims to evaluate the potential of E966-0530-45418, a novel CDK8 inhibitor, in mitigating PF progression and explores its underlying mechanisms.

View Article and Find Full Text PDF

Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets.

Int J Biol Sci

January 2025

School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.

Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO.

View Article and Find Full Text PDF

Background: Recently, autologous cultured fibroblast and platelet-rich plasma (PRP) therapies have been attempted for skin rejuvenation. Unlike PRP, grafted fibroblasts not only produce connective tissue but also influence the surrounding environment through a paracrine effect. Fibroblast-derived cytokines interact with and are modulated by neighboring tissue-constituting cells.

View Article and Find Full Text PDF

Background: Skin pigmentation disorders may increase patients' psychological burdens. Consequently, they are increasingly attracting attention. Dermal fibroblasts have been shown to regulate pigmentation by secreting soluble factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!