is a newly described animal pathogen, closely related to the emerging human pathogen and , a major pathogen of small ruminants. In this study, proteins of a whole cell and a shaving fraction and the exoproteome of strain W25 were analyzed as a first proteome study of this species. In total, 1305 proteins were identified out of 2013 proteins encoded by the W25 genome sequence and number of putative virulence factors were detected already under standard growth conditions including phospholipase D and sialidase. An up to now uncharacterized trypsin-like protease is by far the most secreted protein in this species, indicating a putative role in pathogenicity. Furthermore, the proteome analyses carried out in this study support the recently published taxonomical delineation of from the closely related zoonotic species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564913 | PMC |
http://dx.doi.org/10.3390/proteomes8030019 | DOI Listing |
J Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
China CDC Wkly
January 2025
Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.
Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.
Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.
China CDC Wkly
January 2025
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
Intestinal infections affect approximately 450 million people globally, predominantly impacting children and immunocompromised individuals in low- and middle-income countries (LMICs) due to inadequate water, sanitation, and hygiene (WASH) conditions, poverty, malnutrition, and low literacy. In Kenya, the prevalence of intestinal infections is elevated by warm tropical climates and socioeconomic factors. This scoping review evaluates the national prevalence, risk factors, and contamination sources of intestinal protozoa in Kenya, using a One Health approach to synthesize existing data from various human, animal, and environmental studies.
View Article and Find Full Text PDFChina CDC Wkly
January 2025
Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China.
What Is Already Known About This Topic?: spp., while naturally occurring as commensal bacteria in the gastrointestinal tract of animals and humans, have emerged as significant opportunistic pathogens in healthcare settings.
What Is Added By This Report?: A comprehensive surveillance study revealed enterococci in 14.
RSC Adv
January 2025
College of Food Science and Technology, Jiangsu Agri-animal Husbandry Vocational College Taizhou 225300 China
Bacterial infections are a major global health challenge, posing severe risks to human well-being. Although numerous strategies have been developed to combat bacterial pathogens, their practical application is often hindered by operational constraints. Photocatalytic materials have emerged as promising candidates for bacterial disinfection and food preservation due to their efficiency and sustainability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!