AI Article Synopsis

  • The study analyzes the impact of oxygen levels on amino acid turnover in thawed human embryos, focusing on those developing well (progressive) versus those not progressing (stagnant).
  • Embryos cultured in a lower, physiological oxygen concentration (5%) showed reduced consumption of amino acids and lower overall turnover compared to those at standard atmospheric levels (≈20%).
  • The findings suggest that using a controlled oxygen environment could enhance embryo viability post-thaw, potentially improving assisted reproductive outcomes.

Article Abstract

The vitrification of human embryos is more and more frequently being utilized as a method of assisted reproduction. For this technique, gentle treatment of the embryos after thawing is crucial. In this study, the balance of amino acids released to/consumed from the cultivation media surrounding the warmed embryos was observed in the context of a cultivation environment, which was with the atmospheric oxygen concentration ≈20% or with a regulated oxygen level-hysiological (5%). It is the first time that total amino acid turnover in human embryos after their freezing at post compaction stages has been evaluated. During this study, progressive embryos (developed to blastocyst stage) and stagnant embryos (without developmental progression) were analyzed. It was observed that the embryos cultivated in conditions of physiological oxygen levels (5% oxygen) showed a significantly lower consumption of amino acids from the cultivation media. Progressively developing embryos also had significantly lower total amino acid turnovers (consumption and production of amino acids) when cultured in conditions with physiological oxygen levels. Based on these results it seems that a cultivation environment with a reduced oxygen concentration decreases the risk of degenerative changes in the embryos after thawing. Therefore, the cultivation of thawed embryos in an environment with physiological oxygen levels may preclude embryonal stagnation, and can support the further development of human embryos after their thawing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466109PMC
http://dx.doi.org/10.3390/jcm9082609DOI Listing

Publication Analysis

Top Keywords

human embryos
16
embryos thawing
16
embryos
12
amino acids
12
physiological oxygen
12
oxygen levels
12
oxygen
8
cultivation media
8
cultivation environment
8
oxygen concentration
8

Similar Publications

The study examines the morphometric development of the anterior cranial fossa in human fetuses and its clinical implications. The anterior cranial fossa, crucial for protecting the frontal lobes, was analyzed during prenatal development using innovative computer image processing techniques. We hypothesized that the growth of the anterior cranial fossa is not uniform throughout fetal development and that changing geometric relationships are important for possible therapeutic interventions in cases of congenital defects.

View Article and Find Full Text PDF

Signaling pathway regulators in preimplantation embryos.

J Mol Histol

December 2024

Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O.Box 16635-148, Tehran, Iran.

Embryonic development during the preimplantation stages is highly sensitive and critically dependent on the reception of signaling cues. The precise coordination of diverse pathways and signaling factors is essential for successful embryonic progression. Even minor disruptions in these factors can result in physiological dysfunction, fetal malformations, or embryonic arrest.

View Article and Find Full Text PDF

Identifying target proteins for bioactive molecules is essential for understanding their mechanisms, developing improved derivatives, and minimizing off-target effects. Despite advances in target identification (target-ID) technologies, significant challenges remain, impeding drug development. Most target-ID methods use cell lysates, but maintaining an intact cellular context is vital for capturing specific drug-protein interactions, such as those with transient protein complexes and membrane-associated proteins.

View Article and Find Full Text PDF

Effects of Gestational Diabetes Mellitus on Fetal Cardiac Morphology.

Med Sci (Basel)

December 2024

Department of Perinatology, Ege University, İzmir 35000, Turkey.

Objective: This study aims to investigate the possible effects of gestational diabetes mellitus (GDM) on fetal heart structure and the relationship of this effect with maternal blood sugar control.

Materials And Methods: In this cross-sectional study, 19 women with GDM at 24-36 weeks of gestation (case group) and 21 healthy pregnant women at the same weeks of gestation (control group) were examined. Fetal heart structure was evaluated by ultrasonography; interventricular septum (IVS) thickness, right and left ventricular sphericity indices, global sphericity index (GSI) and cardio-thoracic ratio were also measured.

View Article and Find Full Text PDF

To optimize the utilization of the sea star , which has demonstrated potential pharmaceutical properties in Chinese folk medicine, ten glycosides of polyhydroxy steroids, pectiniferosides A-J (-), were isolated and characterized. These compounds possess 3β, 6α, 8, 15α (or β), 16β-pentahydroxycholestane aglycones with sulfated and (or) methylated monosaccharides. The chemical structures of - were determined using NMR spectroscopy and HR-ESI-MS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!