As a promising fungicide, the potential environmental risk of trifloxystrobin (TFS) and its main metabolism trifloxystrobin acid (TFSA) in soil environment should be given special attention. The present study investigated the potential risks of TFS and TFSA in soil environment to earthworms (Eisenia fetida) through measuring several biomarkers. Residual analysis showed that TFSA was more stable than TFS in artificial soil with half-lives ranging from 138.6 to 231.0 d and 20.4-24.7 d, respectively. Additionally, the accumulation of TFS in earthworms increased in the beginning and then decreased from day 14, while that of TFSA continuously increased. At concentrations of 4.0 mg/kg and 10.0 mg/kg, the weight and lysosomal membrane stability of earthworms were reduced; however, the superoxide dismutase (SOD) activity, glutathione-S-transferase (GST) activity and malondialdehyde (MDA) content in earthworms were enhanced by TFS and TFSA. Moreover, the growth inhibition effect and the oxidative damage level induced by TFSA to earthworms were higher than those induced by TFS. The transcriptome analysis date indicated that the differentially expressed genes (DEGs) in both TFS and TFSA treatments were mainly enriched in ribosome pathway and lysosome pathway, finally affecting the protein synthesis and proteolysis in earthworms. The findings of the present study indicated that TFSA may pose a higher risk in the soil environment than TFS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115100 | DOI Listing |
Environ Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Microbes have been shown to adapt to stressful or even lethal conditions through displaying genome plasticity. However, how bacteria utilize the ability of genomic plasticity to deal with high antimony (Sb) stress has remained unclear. In this study, the spontaneous mutant strain SMAs-55 of sp.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS, US Arid Land Agricultural Research Center, 21881 North Cardon Lane Maricopa, Maricopa, AZ 85138, USA.
As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China.
To reveal the changes in crop yield and contribution rate of black soil productivity under long-term different fertilization conditions in black soil areas and to find the important significance of fertilization for sustainable and stable crop yield, high yield, and improving the contribution rate of black soil nutrients. Based on the long-term experiment of black soil fertility in Harbin, the Ministry of Agriculture and Rural Affairs, under the maize-wheat-soybean rotation system, crop yield, sustainability and stability of yield, the contribution rate of black soil productivity, and natural nutrient supply capacity under 10 fertilization treatments (CK, NP, NK, PK, NPK, M, MNP, MNK, MPK, and MNPK) were analyzed. Results showed that, compared with the treatment of chemical fertilizer, yields of maize, wheat, and soybeans increased under treatment of organic fertilizer combined with chemical fertilizer, among which the yields of maize and wheat changed the most.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!