An alarming rise of micro-nano plastics (MNPs) in environment is currently causing the biggest threat to biotic and abiotic components around the globe. These pollutants, apart from being formed through fragmentation of larger plastic pieces and are also manufactured for commercial usage. MNPs enter agro-ecosystem, wildlife, and human body through the food chain, ingestion or through inhalation, causing blockage in the blood-brain barrier, lower fertility, and behavioural abnormalities among other problems. Hence, it becomes essential to develop novel procedures for remediation of MNPs. Among the numerous existing methods, microbial remediation promises to degrade/recover MNPs via a green route. Since microbial remediation processes mostly depend upon biotic and abiotic factors such as (temperature, pH, oxidative stress, etc.), it becomes easy to influence changes in the plastic pollutants. Hence, with the help of recent technologies, a complete degradation/removal of MNPs can be expected by utilizing the respective carbon content as energy sources for growth of microorganisms. In this review, considering the urgent environmental need, the impact of micro-nano plastics on ecosystem along with its corresponding degradation mechanisms has been brought out. Also, importance of the various recent research approaches in MNPs remediation is highlighted. Finally, the role of enzyme and membrane technology, nanoparticle technology, and metagenomics in remediation of MNPs are discussed for the first time in detail to bring out a novel remedy for the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115044 | DOI Listing |
Microbiome
January 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States.
This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.
View Article and Find Full Text PDFEnviron Res
January 2025
, UniSA STEM, ScaRCE, University of South Australia, SA 5000, Australia. Electronic address:
Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Safety and Water Ecology Technology, Zhengzhou 450001, China; Henan International Joint Laboratory of Environmental Pollution Remediation and Grain Quality Security, Zhengzhou 450001, China.
This study integrates partial denitrification/Anammox (PD/A) with hydroxyapatite (HAP) crystallization in a single reactor, achieving simultaneous nitrogen and phosphorus removal along with phosphorus recovery. By adjusting pH, sludge concentration, low COD/TN ratio, and applying moderate dissolved oxygen stress, the system operated stably and promoted the synergistic growth of HAP and biomass. Results showed a nitrogen removal efficiency (NRE) of 94.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, Guilin 541004, China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China. Electronic address:
This study examined the effects of polyethylene terephthalate (PET) nanoplastics on the rhizosphere of Oryza sativa L., focusing on dynamic changes and interactions among microbial communities, antibiotic resistance genes (ARGs) and microplastic degradation genes (MDGs). PET exposure altered the structure and function of soil microbial, enabling specific microbial groups to thrive in polluted environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!