A nanocomposite based on bacterial cellulose (BC) containing montmorillonite (MMT) modified with silver (BC-MMT-Ag) was developed to be used as potential scaffold for wound healing. Montmorillonite was suspended in silver nitrate solution to incorporate silver in the matrix by ion exchange. The derivative silver clay suspension was used to modify bacterial cellulose membranes by ex situ technique. The BC nanocomposite was analyzed by thermal analysis, scanning electron microscopy, Fourier transform infrared and electron dispersion spectroscopies, X-ray diffraction, and rehydration capacity. The antimicrobial activity of the silver montmorillonite-bacterial cellulose nanocomposite was challenged in cultures of Gram(+) Staphylococcus aureus and Gram(-) Pseudomonas aeruginosa, and showed inhibition of growth in agar plates and biofilm formation as revealed by live-dead assay. Cytotoxicity of BC nanocomposites containing 1% to 25% of MMT-Ag showed good in vitro biocompatibility with L929 fibroblast cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2020.111152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!