Inulin as an external carbon source was used as the fructose substitute to Gluconacetobacter xylinus (ATCC 10245) bacterial strain in a successful synthesis of cellulosic pockets to be used in drug delivery and storage. It was observed that inulobiose trans conformation was in agreement with ϕ = Ψ = ω = 180° and angular rotation of ϴ (C1-C2-0-CI''), ϴ (C2-0-C 1'-C2') and ϴ (0-C1'-C2'-0') respectively. A bacterial susceptibility test revealed a successful inactivation of Staphylococcus aureus and Escherichia coli in the presence of photons. Fourier Transform Infrared Spectroscopy analysis confirmed an OH absorption was verified at 3423 cm. Pocket drug uptake test revealed a highly absorbent structure with the thermal stability directly proportional to the increase in drug uptake, while the increase in the degree of polymerization resulted in the increase in antioxidant activity and rate of bacterial inactivation. HYPOTHESIS: Inulin as an inert polysaccharide is neutral to cellular activity, therefore, could not be an agent for bacteria inactivation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111230DOI Listing

Publication Analysis

Top Keywords

cellulosic pockets
8
bacteria inactivation
8
test revealed
8
drug uptake
8
synthesized oh-radical
4
oh-radical rich
4
rich bacteria
4
bacteria cellulosic
4
pockets photodynamic
4
photodynamic bacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!