This study aimed at investigating the synthesis, characterization, and search for a biotechnological application proposal for poly [(R)-3-hydroxybutyric acid] (PHB) grafted with the n-hydroxyethyl acrylamide (HEAA) monomer. The novel copolymer was prepared by Co gamma radiation-induced-graft polymerization. The effect of different solvents in the graft polymerization; the degree of grafting, crystallinity, and hydrophilicity; the morphology and the thermal properties were evaluated. The polyurethane fabricated from the grafted PHB was suggested as a scaffold. The enzymatic degradation behavior and the spectroscopic, morphological, mechanical, and biological properties of the composites were assessed. According to the results, the successful grafting of HEAA onto PHB was verified. The grafting was significantly affected by the type of solvent employed. A decreased crystallinity and increased hydrophilicity of the graft copolymer, concerning the PHB, was found. An increased roughness was observed in the morphology of the polymer after grafting. The thermodynamic parameters, except for the glass transition temperature, also decreased for the synthetic biopolymer. The intended use of these scaffolds for skin tissue engineering was supported by a proper degradability and degree of porosity, improved mechanical properties, the optimal culture of human fibroblasts, and its transfection with a plasmid vector containing an enhanced green fluorescent protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2020.111176 | DOI Listing |
Polymers (Basel)
September 2024
Biopolymer Group, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
This study investigates hydrogels based on 2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) copolymers, incorporating N-hydroxyethyl acrylamide (HEA) and 3-sulfopropyl acrylate potassium salt (SPA). The addition of HEA and SPA is designed to fine-tune the hydrogels' water absorption and mechanical properties, ultimately enhancing their characteristics and expanding their potential for biomedical applications. A copolymer of AMPS, 2-carboxyethyl acrylate (CEA) combined with methacrylic acid (MAA) as poly(AMPS-stat-CEA-stat-MAA, PACM), was preliminarily synthesized.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2024
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:
Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings.
View Article and Find Full Text PDFInt J Biol Macromol
July 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, PR China. Electronic address:
As flexible electronics devices for energy storage, mechanical energy collection and self-powered sensing, stretchable flexible supercapacitor and triboelectric nanogenerator (TENG) have attracted extensive attention. However, it is difficult to satisfy the requirements of high safety and resistance to extreme conditions. Dual roles of mechanical and electrical enhancement of inorganic salt are put forward, and a carrageenan (CG) enhanced poly (N-hydroxyethyl acrylamide)/CG/lithium chloride/glycerol (PCLG) conductive gel is prepared by designing hydrogen bonding self-crosslinking and chain entanglement.
View Article and Find Full Text PDFGels
May 2024
Biopolymer Group, Department of Chemistry, Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
This study explores the synthesis and modification of poly(N-vinylformamide-co-N-hydroxyethyl acrylamide) (poly(NVF-co-HEA)) hydrogels for cosmetic applications. Poly(NVF-co-HEA) hydrogels were produced followed by an acid hydrolysis reaction to produce poly(NVF-co-VAm-co-HEA) hydrogels, introducing poly(vinyl amine) (PVAm) into the structure. This modification considerably alters the hydrogels' properties, yielding materials with over 96% water content, predominantly in the form of non-freezing or free water, which is beneficial in the uptake and release of hydrophilic species.
View Article and Find Full Text PDFCarbohydr Polym
June 2024
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510640, China. Electronic address:
The development of highly effective chitosan-based hemostatic materials that can be utilized for deep wound hemostasis remains a considerable challenge. In this study, a hemostatic antibacterial chitosan/N-hydroxyethyl acrylamide (NHEMAA)/TiCT (CSNT) composite cryogel was facilely prepared through the physical interactions between the three components and the spontaneous condensation of NHEMAA. Because of the formation of strong crosslinked network, the CSNT cryogel showed a developed pore structure (~ 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!