Biodegradable Zn alloys containing Fe suffer from a common problem that FeZn second phase particles are coarse. This problem roots thermodynamically from the negligible solid solubility of Fe in Zn and priority of FeZn solidification over Zn. In this paper, bottom circulating water-cooled casting method is successfully developed to significantly refine FeZn particles in Zn-0.3Fe alloy, owing to its cooling speed about 8 times of that of conventional casting. The second phase refinement alleviates brittleness of the alloy, increases the ultimate tensile strength by about 62%, and decreases electrochemical corrosion rate (CR) by about 19%, but immersion CR by only about 4% due to barrier effect of corrosion products. Viability of human umbilical vein endothelial cells maintains at a high level over 95% in 25-100% extracts. A great potential is shown for improving comprehensive properties of biodegradable Zn alloys without changing its chemical compositions through such a physical method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.msec.2020.111197 | DOI Listing |
J Infect Dev Ctries
December 2024
Federal University of São João Del Rei, Dona Lindu Campus, Sebastião Gonçalves Coelho Street, 400, Chanadour, 35501-296 Divinópolis, MG, Brazil.
Introduction: We assessed the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated socio-occupational factors among delivery riders from a Brazilian city at two time points during the pandemic.
Methodology: Surveys for antibody and viral RNA testing were conducted from November 2020 to January 2021, and from March to May 2021 in a group of 117 delivery riders. A questionnaire on socio-occupational characteristics and coronavirus disease 2019 (COVID-19) preventive measures was completed.
Virol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Geriatric Care Research Center, Xiamen Medical College, Xiamen, Fujian, 361023, China.
Purpose: This study examined the effects of individualized dietary modifications based on the volume-viscosity swallow test (V-VST) on functional oral intake, incidence of pneumonia, and swallowing-related quality of life in individuals with intracerebral hemorrhage.
Methods: One hundred and seven participants with signs of dysphagia in the acute and early subacute phases of stroke following intracerebral hemorrhage were randomly assigned into an experimental group for individualized dietary modifications based on V-VST plus routine standard care (n = 53), and a control group for routine care alone (n = 54). Incidence of pneumonia, functional oral intake scale (FOIS) ratings and Eating Assessment Tool (EAT-10) scores before and after intervention were evaluated.
Mol Biomed
January 2025
Laboratory of Radiation Medicine, NHC Key Laboratory of Nuclear Technology Medical Transformation, School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
Sci Rep
January 2025
Faculty of Engineering, Université de Moncton, Moncton, NB, E1A3E9, Canada.
Diabetes is a growing health concern in developing countries, causing considerable mortality rates. While machine learning (ML) approaches have been widely used to improve early detection and treatment, several studies have shown low classification accuracies due to overfitting, underfitting, and data noise. This research employs parallel and sequential ensemble ML approaches paired with feature selection techniques to boost classification accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!