Calcium phosphates, due to their similarity to the inorganic fraction of mineralized tissues, are of great importance in treatment of bone defects. In order to improve the biological activity of hydroxyapatite (HAP), its fluoride-substituted modification (FAP) was synthesized using the sol-gel method and calcined at three different temperatures in the range of 800-1200 °C. Physicochemical and biological properties were evaluated to indicate which material would support bone regeneration the best. X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry (EDS), and Fourier transform infrared spectroscopy (FTIR) revealed that fluoride ions were incorporated into the apatite lattice structure. In studies it was found that fluorapatite sintered at the highest temperature had the lowest porosity, no internal pores and the highest density. In vitro ion reactivity assessments showed that during the 28-day immersion of the samples in the simulated body fluid, the uptake of calcium and phosphorus ions was inversely correlated to the calcination temperature. All tested materials were non-toxic since the cytotoxicity MTT assay demonstrated that the viability of preosteoblast cells incubated with sample extracts was high. Fluorapatite sintered at 800 °C was determined to be of optimal porosity and fluoride release capacity and then used in cell proliferation studies. The results showed that it significantly shortened the doubling time and thus enhanced the proliferation of osteogenic cells, as compared to the fluoride solutions and control group. Therefore, this material is proposed for the use in orthopedic applications and bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2020.111211DOI Listing

Publication Analysis

Top Keywords

bone tissue
8
fluorapatite sintered
8
fluorapatite ceramics
4
bone
4
ceramics bone
4
tissue regeneration
4
regeneration synthesis
4
synthesis characterization
4
characterization assessment
4
assessment biomedical
4

Similar Publications

Unlabelled: During the Iron Age, north-eastern Iberian communities relied on crop cultivation and animal husbandry for their subsistence. The latter was mainly focused on caprine, with sheep being prominent due to their suitability to the Mediterranean climate, orography, and environment. Despite the pivotal role of sheep in livestock husbandry, information on Iberian communities' feeding strategies for this species is limited.

View Article and Find Full Text PDF

Osteochondral injuries in the knee are uncommon in the immature skeleton and are usually related to sporting activities. Fixation is required depending on the size and location of the fragment. The standard technique is open reduction and internal fixation with metal screws, which are removed in a second procedure after consolidation.

View Article and Find Full Text PDF

A 69-year-old female patient, who had been operated on 20 years ago (unipolar hip prosthesis), presented with a complaint of pain in the thigh and a limp with onset 1 year before. An X ray revealed stem subsidence and varus collapse. One-stage revision hip replacement was performed in view of poor cardiac status, and grew in the tissue culture.

View Article and Find Full Text PDF

Utility of photon-counting detectors for MV-kV dual-energy computed tomography imaging.

J Med Imaging (Bellingham)

December 2024

University of Chicago, Department of Radiology, Chicago, Illinois, United States.

Purpose: High soft-tissue contrast imaging is essential for effective radiotherapy treatment. This could potentially be realized using both megavoltage and kilovoltage x-ray sources available on some therapy treatment systems to perform "MV-kV" dual-energy (DE) computed tomography (CT). However, noisy megavoltage images obtained with existing energy-integrating detectors (EIDs) are a limiting factor for clinical translation.

View Article and Find Full Text PDF

Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!