Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two stereoisomers of pentacoordinate iridium(III) hydridochloride with triptycene-based PC(sp)P pincer ligand (1,8-bis(diisopropylphosphino)triptycene), and , differ by the orientation of hydride ligand relative to the bridgehead ring of triptycene. According to DFT/B3PW91/def2-TZVP calculations performed, an equatorial Cl ligand can relatively easily change its position in , whereas that is not the case in . Both complexes and readily bind the sixth ligand to protect the empty coordination site. Variable temperature spectroscopic (NMR, IR, and UV-visible) studies show the existence of two isomers of hexacoordinate complexes ·MeCN, ·MeCN, and ·Py with acetonitrile or pyridine coordinated trans to hydride or trans to metalated C(sp), whereas only the equatorial isomer is found for ·Py. These complexes are stabilized by various intramolecular noncovalent C-H···Cl interactions that are affected by the rotation of isopropyls or pyridine. The substitution of MeCN by pyridine is slow yielding axial Py complexes as kinetic products and the equatorial Py complexes as thermodynamic products with faster reactions of ·L. Ultimately, that explains the higher activity of in the catalytic alkenes' isomerization observed for allylbenzene, 1-octene, and pent-4-enenitrile, which proceeds as an insertion/elimination sequence rather than through the allylic mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c00797 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!