This study reports on the effect of a bilayer period on the growth behavior, microstructure evolution, and electrical properties of atomic layer deposition (ALD) deposited In-Zn-O (IZO) films, fixing the ALD cycle ratio of In-O/Zn-O as 9:1. Here, the bilayer period is defined as the total number of ALD cycles in one supercycle of In-O and Zn-O by alternately stacking Zn-O and In-O layers at a temperature of 220 °C. IZO films with a bilayer period from 10 to 40 cycles, namely, IZO[In-O/Zn-O = 9:1] to IZO[36:4], result to form an amorphous phase with a resistivity of 4.94 × 10 Ω·cm. However, by increasing the bilayer period above 100 cycles, the IZO films begin to form a mixed amorphous-nanocrystalline microstructure, resulting from the limited intermixing at the interfaces. Concomitantly, the overall film resistivity is considerably increased with a simultaneous decrease in both the carrier mobility and the concentration. These results not only reveal the importance of the bilayer period in designing the ALD stacking sequence in the ALD-IZO, but also provide the possibility of forming various multilayered materials with different electrical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c07540DOI Listing

Publication Analysis

Top Keywords

bilayer period
24
electrical properties
12
izo films
12
atomic layer
8
layer deposition
8
growth behavior
8
bilayer
6
period
5
period atomic
4
deposition growth
4

Similar Publications

Quasiperiodic Pairing in Graphene Quasicrystals.

Nano Lett

January 2025

Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.

We investigate the superconducting instabilities of twisted bilayer graphene quasicrystals (TBGQCs) obtained by stacking two monolayer graphene sheets with 30° relative twisting. The electronic energy spectrum of the TBGQC contains periodic energy ranges (PERs) and quasiperiodic energy ranges (QERs), where the underlying local density of states (LDOS) exhibits periodic and quasiperiodic distribution, respectively. We found that superconductivity in the PER is a simple superposition of two monolayer superconductors.

View Article and Find Full Text PDF

The discovery of moiré physics in two-dimensional (2D) materials has opened new avenues for exploring unique physical and chemical properties induced by intralayer/interlayer interactions. This study reports the experimental observation of moiré patterns in 2D bismuth oxyselenide (BiOSe) nanosheets grown through one-pot chemical reaction methods and a sonication-assisted layer separations technique. Our findings demonstrate that these moiré patterns result from the angular stacking of the nanosheets at various twist angles, leading to the formation of moiré superlattices (MSLs) with distinct periodicities.

View Article and Find Full Text PDF

Artificial Fine-Tuned van Hove Singularity in Twisted Bilayer and Double-Twist Trilayer Graphene with Enhanced Absorption for Photodetection and Photoemission in the Near-Infrared II Range.

ACS Appl Mater Interfaces

January 2025

State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.

Optical responses of twisted bilayer graphene at targeted wavelengths can be amplified by leveraging energy levels of van Hove singularities (VHS) via tuning periods of moiré superlattices. Therefore, precise control of twist angles as well as the moiré superlattices is necessary for fabricating integrated optoelectronic devices such as photodetectors and emitters. Although recent advances in twist angle control help the observation of correlated states in twisted magic-angle graphene structures, the impact of such precise control on enhanced optical absorption is still under investigation.

View Article and Find Full Text PDF

Plasma membrane (PM) simulations at longer length and time scales at nearly atomistic resolution can provide invaluable insights into cell signaling, apoptosis, lipid trafficking, and lipid raft formation. We propose a coarse-grained (CG) model of a mammalian PM considering major lipid head groups distributed asymmetrically across the membrane bilayer and validate the model against bilayer structural properties from atomistic simulation. Using the proposed CG model, we identify a recurring pattern in the passive collective cholesterol transbilayer motion and study the individual cholesterol flip-flop events and associated pathways along with lateral ordering in the bilayer during a flip-flop event.

View Article and Find Full Text PDF

This study presents a novel in vitro bilayer 3D co-culture platform designed to obtain cancer-associated fibroblasts (CAFs)-like cells. The platform consists of a bilayer hydrogel structure with a collagen/polyethylene glycol (PEG) hydrogel for fibroblasts as the upper layer and an alginate hydrogel for tumor cells as the lower layer. The platform enabled paracrine interactions between fibroblasts and cancer cells, which allowed for selective retrieval of activated fibroblasts through collagenase treatment for further study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!