Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Superhydrophobic surfaces repel water and other liquids such as tissue fluid, blood, urine, and pus, which can open up a new avenue for the development of biomedical devices and has led to promising advances across diverse fields, including plasma separator devices, blood-repellent sensors, vascular stents, and heart valves. Here, the fabrication of superhydrophobic liquid-solid contact triboelectric nanogenerators (TENGs) and their biomedical applications as droplet sensors are reported. Triboelectrification energy can be captured and released when droplets are colliding or slipping on the superhydrophobic layer. The developed superhydrophobic TENG possesses multiple advantages in terms of simple fabrication, bendability, self-cleaning, self-adhesiveness, high sensitivity, and repellency to not only water but also a variety of solutions, including blood with a contact angle of 158.6°. As a self-powered sensor, the developed prototypes of a drainage bottle droplet sensor and a smart intravenous injection monitor based on the superhydrophobic liquid-solid contact TENG can monitor the clinical drainage operation and intravenous infusion in real time, respectively. These prototypes suggest the potential merit of this superhydrophobic liquid-solid contact TENG in clinical application, paving the way for accurately monitoring clinical drainage operations and intravenous injection or blood transfusion in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c10097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!