A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strain-Work Function Relationship in Single-Crystal Tetracene. | LitMetric

Strain-Work Function Relationship in Single-Crystal Tetracene.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States.

Published: September 2020

Understanding the impact of strain on organic semiconductors is important for the development of electronic devices and sensors that are subject to environmental changes and mechanical stimuli; it is also important for understanding the fundamental mechanisms of charge trapping. Following our previous study on the strain effects in rubrene, we present here only the second example of the strain-work function relationship in an organic semiconductor; in this case, the benchmark material tetracene. Thin, platelike single crystals of tetracene with large (001) facets were laminated onto silicon and rubber substrates having significantly different coefficients of thermal expansion; mechanical strain in tetracene was subsequently induced by varying the temperature of the assembly. Tensile and compressive strains parallel to the (001) major facet were measured by grazing incidence X-ray diffraction, and the corresponding shifts in the electronic work functions were recorded via scanning Kelvin probe microscopy (SKPM). The work function of the tetracene (001) crystal surface directly correlated with the net mechanical strain and increased by ∼100 meV for in-plane tensile strains of 0.1% and decreased by approximately the same amount for in-plane compressive strains of -0.1%. This work provides evidence of the general and important impact of strain on the electrical properties of van der Waals bonded crystalline organic semiconductors and thereby supports the hypothesis that heterogeneous strains, for example in thin films, can be a major source of static electronic disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c11566DOI Listing

Publication Analysis

Top Keywords

strain-work function
8
function relationship
8
impact strain
8
organic semiconductors
8
mechanical strain
8
compressive strains
8
tetracene
5
strain
5
relationship single-crystal
4
single-crystal tetracene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!