Preparation of Twisted Bilayer Graphene via the Wetting Transfer Method.

ACS Appl Mater Interfaces

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, P. R. China.

Published: September 2020

Assembling monolayers into a bilayer system unlocks the rotational free degree of van der Waals (vdW) homo/heterostructure, enabling the building of twisted bilayer graphene (tBLG) which possesses novel electronic, optical, and mechanical properties. Previous methods for preparation of homo/heterstructures inevitably leave the polymer residue or hexagonal boron nitride (-BN) mask, which usually obstructs the measurement of intrinsic mechanical and surface properties of tBLG. Undoubtedly, to fabricate the designable tBLG with clean interface and surface is necessary but challenging. Here, we propose a simple and handy method to prepare atomically clean twisted bilayer graphene with controllable twist angles based on wetting-induced delamination. This method can transfer tBLG onto a patterned substrate, which offers an excellent platform for the observation of physical phenomena such as relaxation of moiré pattern in marginally tBLG. These findings and insight should ultimately guide the designable packaging and atomic characterization of the two-dimensional (2D) materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c12000DOI Listing

Publication Analysis

Top Keywords

twisted bilayer
12
bilayer graphene
12
tblg
5
preparation twisted
4
bilayer
4
graphene wetting
4
wetting transfer
4
transfer method
4
method assembling
4
assembling monolayers
4

Similar Publications

The chiral lattice structure of twisted bilayer graphene with D_{6} symmetry allows for intrinsic photogalvanic effects only at off-normal incidence, while additional extrinsic effects are known to be induced by a substrate or a gate potential. In this Letter, we first compute the intrinsic effects and show they reverse sign at the magic angle, revealing a band inversion at the Γ point. We next consider different extrinsic effects, showing how they can be used to track the strengths of the substrate coupling or electric displacement field.

View Article and Find Full Text PDF

Emergent Symmetry and Valley Chern Insulator in Twisted Double-Bilayer Graphene.

Phys Rev Lett

December 2024

Microelectronics Research Center, Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758, USA.

Theoretical calculations show that twisted double bilayer graphene (TDBG) under a transverse electric field develops a valley Chern number 2 at charge neutrality. Using thermodynamic and thermal activation measurements we report the experimental observation of a universal closing of the charge neutrality gap in the Hofstadter spectrum of TDBG at 1/2 magnetic flux per unit cell, in agreement with theoretical predictions for a valley Chern number 2 gap. Our theoretical analysis of the experimental data shows that the interaction energy, while larger than the flat-band bandwidth in TDBG near 1° does not alter the emergent valley symmetry or the single-particle band topology.

View Article and Find Full Text PDF

Possible Sliding Regimes in Twisted Bilayer WTe_{2}.

Phys Rev Lett

December 2024

Department of Physics, Stanford University, Stanford, California 94305, USA.

Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.

View Article and Find Full Text PDF

Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.

View Article and Find Full Text PDF

Applying long wavelength periodic potentials on quantum materials has recently been demonstrated to be a promising pathway for engineering novel quantum phases of matter. Here, we utilize twisted bilayer boron nitride (BN) as a moiré substrate for band structure engineering. Small-angle-twisted bilayer BN is endowed with periodically arranged up and down polar domains, which imprints a periodic electrostatic potential on a target two-dimensional (2D) material placed on top.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!