Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is strongly desired to design and synthesize amphiphilic nanoreactors with tunable compatibility, which are stable at the biphasic interface in both acidic and alkaline environments. Herein, a novel amphiphilic R-ZSM-5-R nanoreactor with adjustable hydrophilic-lipophilic balance (solid) (HLB(S)) values has been successfully synthesized by hydrophilic/lipophilic asymmetric modification of the surface of hemishell zeolites. The hemishell zeolites obtained by alkali etching have different surfaces for this asymmetric modification. Owing to the unique hemishell structures and asymmetric modification, the R-ZSM-5-R nanoreactors with an optimized type and amount of modified organosilanes show excellent stability and emulsifying properties under extreme environments, which is important for cascade reactions in a biphasic system. The modified amino groups on the surface of the nanoreactors not only enhance the hydrophilicity of the hemishell zeolites and stabilize ultrasmall Pt nanoparticles (1.90 nm) but also used for the catalytic synthesis of -cinnamaldehyde. The Pt@R-ZSM-5-R amphiphilic catalysts fabricated through a one-step reduction of Pt nanoparticles present outstanding performances in the biphasic cascade synthesis of cinnamic acid, achieving a very high turnover frequency (TOF) of 978 h. The TOF values of the catalysts correspond well to the HLB(S) values of the R-ZSM-5-R nanoreactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c11984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!