A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hemishell Zeolites Synthesized by Asymmetric Modification as Biphasic Nanoreactors with Tunable Amphiphilicity for Catalysis of Cascade Reactions. | LitMetric

It is strongly desired to design and synthesize amphiphilic nanoreactors with tunable compatibility, which are stable at the biphasic interface in both acidic and alkaline environments. Herein, a novel amphiphilic R-ZSM-5-R nanoreactor with adjustable hydrophilic-lipophilic balance (solid) (HLB(S)) values has been successfully synthesized by hydrophilic/lipophilic asymmetric modification of the surface of hemishell zeolites. The hemishell zeolites obtained by alkali etching have different surfaces for this asymmetric modification. Owing to the unique hemishell structures and asymmetric modification, the R-ZSM-5-R nanoreactors with an optimized type and amount of modified organosilanes show excellent stability and emulsifying properties under extreme environments, which is important for cascade reactions in a biphasic system. The modified amino groups on the surface of the nanoreactors not only enhance the hydrophilicity of the hemishell zeolites and stabilize ultrasmall Pt nanoparticles (1.90 nm) but also used for the catalytic synthesis of -cinnamaldehyde. The Pt@R-ZSM-5-R amphiphilic catalysts fabricated through a one-step reduction of Pt nanoparticles present outstanding performances in the biphasic cascade synthesis of cinnamic acid, achieving a very high turnover frequency (TOF) of 978 h. The TOF values of the catalysts correspond well to the HLB(S) values of the R-ZSM-5-R nanoreactors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c11984DOI Listing

Publication Analysis

Top Keywords

hemishell zeolites
16
asymmetric modification
16
nanoreactors tunable
8
cascade reactions
8
hlbs values
8
r-zsm-5-r nanoreactors
8
hemishell
5
nanoreactors
5
zeolites synthesized
4
asymmetric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!