Selective Etching of Graphene Membrane Nanopores: From Molecular Sieving to Extreme Permeance.

ACS Appl Mater Interfaces

Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland.

Published: August 2020

Two-dimensional materials are the essential building blocks of breakthrough membrane technologies due to minimal permeation barriers across atomically thin pores. Tunable pore size fabrication combined with independently controlled pore number density is necessary for outstanding performance but remains a challenge. There is a great need for parallel, upscalable methods that can control pore size from sub-nm to >5 nm, a pore size range required for membranes with effective molecular separation. Here we report a dry, facile, and scalable process introducing atomic defects by design, followed by selective etching of graphene edge atoms able to controllably expand the nanopore dimensions from sub-nm to 5 nm. The attainable average pore sizes at 10 m pore density promise applicability to various separation applications. We investigate the gas permeation and separation mechanisms, finding that these membranes display molecular sieving (H/CH separation factor = 9.3; H permeance = 3370 gas permeation units (GPU)) and reveal the presence of interweaved transport phenomena of pore chemistry, surface flow, and gas molecule momentum transfer. We observe the smooth transition from molecular sieving to effusion at unprecedented permeance (H/CH separation factor = 3.7; H permeance = 10 GPU). Our scalable graphene membrane fabrication approach in combination with sub-5 nm pores opens a new route employing 2D membranes to study gas transport and effectively paving the way to industrial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c07277DOI Listing

Publication Analysis

Top Keywords

molecular sieving
12
pore size
12
selective etching
8
etching graphene
8
graphene membrane
8
gas permeation
8
h/ch separation
8
separation factor
8
factor permeance
8
pore
7

Similar Publications

This paper aims to address the challenge of precise robotic grasping of molecular sieve drying bags during automated packaging by proposing a six-dimensional (6D) pose estimation method based on an red green blue-depth (RGB-D) camera. The method consists of three components: point cloud pre-segmentation, target extraction, and pose estimation. A minimum bounding box-based pre-segmentation method was designed to minimize the impact of packaging wrinkles and skirt curling.

View Article and Find Full Text PDF

Sulfur-containing gases produced during the utilization of petroleum fuels are the main cause of air pollution. To remove organic sulfur-containing compounds from simulated gasoline, magnetic hydrophobic Cu-containing SBA-15 mesoporous molecular sieves (PMS-Cu) were prepared by magnetization of the sample, loading and reduction of copper ion and hydrophobic treatment of the sample. The composition and structure of the synthesized composites were characterized by XRD, FTIR, SEM, TEM, and XPS, which proved the successful preparation of the adsorbent PMS-Cu.

View Article and Find Full Text PDF

A Ti-MCM-41 mesoporous molecular sieve catalyst was prepared by a hydrothermal method. Nitrogen adsorption desorption, XRD, TEM and SEM characterization results showed that the catalyst had a large specific surface area, a regular hexagonal pore structure, and titanium doping was uniformly dispersed in MCM-41 molecular sieves. The amount of titanium doping, reaction temperature, and the initial solution pH had important effects on the catalytic ozonation of dimethyl phthalate (DMP) by Ti-MCM-41.

View Article and Find Full Text PDF

Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed.

View Article and Find Full Text PDF

Tuning Fluorination of Carbon Molecular Sieve Membranes with Enhanced Reverse-Selective Hydrogen Separation From Helium.

Small

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Liaoning, Dalian, 116024, China.

Membrane technology has been explored for separating helium from hydrogen in natural gas reservoirs, a process that remains extremely challenging due to the sub-Ångstrom size difference between H and He molecules. Reverse-selective H/He separation membranes offer multiple advantages over conventional helium-selective membranes, which, however, suffer from low H/He selectivity. To address this hurdle, a novel approach is proposed to tune the ultra-micropores of carbon molecular sieves (CMS) membranes through fluorination of the polymer precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!