Conventional computer-aided detection systems (CADs) for colonoscopic images utilize shape, texture, or temporal information to detect polyps, so they have limited sensitivity and specificity. This study proposes a method to extract possible polyp features automatically using convolutional neural networks (CNNs). The objective of this work aims at building up a light-weight dual encoder-decoder model structure for polyp detection in colonoscopy Images. This proposed model, though with a relatively shallow structure, is expected to have the capability of a similar performance to the methods with much deeper structures. The proposed CAD model consists of two sequential encoder-decoder networks that consist of several CNN layers and full connection layers. The front end of the model is a hetero-associator (also known as hetero-encoder) that uses backpropagation learning to generate a set of reliably corrupted labeled images with a certain degree of similarity to a ground truth image, which eliminates the need for a large amount of training data that is usually required for medical images tasks. This dual CNN architecture generates a set of noisy images that are similar to the labeled data to train its counterpart, the auto-associator (also known as auto-encoder), in order to increase the successor's discriminative power in classification. The auto-encoder is also equipped with CNNs to simultaneously capture the features of the labeled images that contain noise. The proposed method uses features that are learned from open medical datasets and the dataset of Zhejiang University (ZJU), which contains around one thousand images. The performance of the proposed architecture is compared with a state-of-the-art detection model in terms of the metrics of the Jaccard index, the DICE similarity score, and two other geometric measures. The improvements in the performance of the proposed model are attributed to the effective reduction in false positives in the auto-encoder and the generation of noisy candidate images by the hetero-encoder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2020.101763 | DOI Listing |
Sci Rep
December 2024
Department of Diagnostic Radiology, Dalhousie University, Halifax, Canada.
The goal of this study was to determine how radiologists' rating of image quality when using 0.5T Magnetic Resonance Imaging (MRI) compares to Computed Tomography (CT) for visualization of pathology and evaluation of specific anatomic regions within the paranasal sinuses. 42 patients with clinical CT scans opted to have a 0.
View Article and Find Full Text PDFSci Rep
December 2024
Merchant Marine College, Shanghai Maritime University, Shanghai, 201306, China.
The intelligent identification of wear particles in ferrography is a critical bottleneck that hampers the development and widespread adoption of ferrography technology. To address challenges such as false detection, missed detection of small wear particles, difficulty in distinguishing overlapping and similar abrasions, and handling complex image backgrounds, this paper proposes an algorithm called TCBGY-Net for detecting wear particles in ferrography images. The proposed TCBGY-Net uses YOLOv5s as the backbone network, which is enhanced with several advanced modules to improve detection performance.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian, 116650, Liaoning, China.
The novel coronavirus (COVID-19) has affected more than two million people of the world, and far social distancing and segregated lifestyle have to be adopted as a common solution in recent years. To solve the problem of sanitation control and epidemic prevention in public places, in this paper, an intelligent disinfection control system based on the STM32 single-chip microprocessor was designed to realize intelligent closed-loop disinfection in local public places such as public toilets. The proposed system comprises seven modules: image acquisition, spraying control, disinfectant liquid level control, access control, voice broadcast, system display, and data storage.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.
This study aimed to investigate alterations in a multilayer network combining structural and functional layers in patients with end-stage kidney disease (ESKD) compared with healthy controls. In all, 38 ESKD patients and 43 healthy participants were prospectively enrolled. They exhibited normal brain magnetic resonance imaging (MRI) without any structural lesions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!